Spaces:
Running
on
Zero
Running
on
Zero
File size: 81,011 Bytes
833590f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 |
# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
import copy
import inspect
import math
import re
from contextlib import nullcontext
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import deprecate, logging
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from transformers import (
T5EncoderModel,
T5Tokenizer,
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
)
from ltx_video.models.autoencoders.causal_video_autoencoder import (
CausalVideoAutoencoder,
)
from ltx_video.models.autoencoders.vae_encode import (
get_vae_size_scale_factor,
latent_to_pixel_coords,
vae_decode,
vae_encode,
)
from ltx_video.models.transformers.symmetric_patchifier import Patchifier
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.schedulers.rf import TimestepShifter
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.utils.prompt_enhance_utils import generate_cinematic_prompt
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
from ltx_video.models.autoencoders.vae_encode import (
un_normalize_latents,
normalize_latents,
)
try:
import torch_xla.distributed.spmd as xs
except ImportError:
xs = None
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
ASPECT_RATIO_1024_BIN = {
"0.25": [512.0, 2048.0],
"0.28": [512.0, 1856.0],
"0.32": [576.0, 1792.0],
"0.33": [576.0, 1728.0],
"0.35": [576.0, 1664.0],
"0.4": [640.0, 1600.0],
"0.42": [640.0, 1536.0],
"0.48": [704.0, 1472.0],
"0.5": [704.0, 1408.0],
"0.52": [704.0, 1344.0],
"0.57": [768.0, 1344.0],
"0.6": [768.0, 1280.0],
"0.68": [832.0, 1216.0],
"0.72": [832.0, 1152.0],
"0.78": [896.0, 1152.0],
"0.82": [896.0, 1088.0],
"0.88": [960.0, 1088.0],
"0.94": [960.0, 1024.0],
"1.0": [1024.0, 1024.0],
"1.07": [1024.0, 960.0],
"1.13": [1088.0, 960.0],
"1.21": [1088.0, 896.0],
"1.29": [1152.0, 896.0],
"1.38": [1152.0, 832.0],
"1.46": [1216.0, 832.0],
"1.67": [1280.0, 768.0],
"1.75": [1344.0, 768.0],
"2.0": [1408.0, 704.0],
"2.09": [1472.0, 704.0],
"2.4": [1536.0, 640.0],
"2.5": [1600.0, 640.0],
"3.0": [1728.0, 576.0],
"4.0": [2048.0, 512.0],
}
ASPECT_RATIO_512_BIN = {
"0.25": [256.0, 1024.0],
"0.28": [256.0, 928.0],
"0.32": [288.0, 896.0],
"0.33": [288.0, 864.0],
"0.35": [288.0, 832.0],
"0.4": [320.0, 800.0],
"0.42": [320.0, 768.0],
"0.48": [352.0, 736.0],
"0.5": [352.0, 704.0],
"0.52": [352.0, 672.0],
"0.57": [384.0, 672.0],
"0.6": [384.0, 640.0],
"0.68": [416.0, 608.0],
"0.72": [416.0, 576.0],
"0.78": [448.0, 576.0],
"0.82": [448.0, 544.0],
"0.88": [480.0, 544.0],
"0.94": [480.0, 512.0],
"1.0": [512.0, 512.0],
"1.07": [512.0, 480.0],
"1.13": [544.0, 480.0],
"1.21": [544.0, 448.0],
"1.29": [576.0, 448.0],
"1.38": [576.0, 416.0],
"1.46": [608.0, 416.0],
"1.67": [640.0, 384.0],
"1.75": [672.0, 384.0],
"2.0": [704.0, 352.0],
"2.09": [736.0, 352.0],
"2.4": [768.0, 320.0],
"2.5": [800.0, 320.0],
"3.0": [864.0, 288.0],
"4.0": [1024.0, 256.0],
}
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
skip_initial_inference_steps: int = 0,
skip_final_inference_steps: int = 0,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
must be `None`.
max_timestep ('float', *optional*, defaults to 1.0):
The initial noising level for image-to-image/video-to-video. The list if timestamps will be
truncated to start with a timestamp greater or equal to this.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None:
accepts_timesteps = "timesteps" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
if (
skip_initial_inference_steps < 0
or skip_final_inference_steps < 0
or skip_initial_inference_steps + skip_final_inference_steps
>= num_inference_steps
):
raise ValueError(
"invalid skip inference step values: must be non-negative and the sum of skip_initial_inference_steps and skip_final_inference_steps must be less than the number of inference steps"
)
timesteps = timesteps[
skip_initial_inference_steps : len(timesteps) - skip_final_inference_steps
]
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
num_inference_steps = len(timesteps)
return timesteps, num_inference_steps
@dataclass
class ConditioningItem:
"""
Defines a single frame-conditioning item - a single frame or a sequence of frames.
Attributes:
media_item (torch.Tensor): shape=(b, 3, f, h, w). The media item to condition on.
media_frame_number (int): The start-frame number of the media item in the generated video.
conditioning_strength (float): The strength of the conditioning (1.0 = full conditioning).
media_x (Optional[int]): Optional left x coordinate of the media item in the generated frame.
media_y (Optional[int]): Optional top y coordinate of the media item in the generated frame.
"""
media_item: torch.Tensor
media_frame_number: int
conditioning_strength: float
media_x: Optional[int] = None
media_y: Optional[int] = None
class LTXVideoPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using LTX-Video.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. This uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
tokenizer (`T5Tokenizer`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
transformer ([`Transformer2DModel`]):
A text conditioned `Transformer2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
"""
bad_punct_regex = re.compile(
r"["
+ "#®•©™&@·º½¾¿¡§~"
+ r"\)"
+ r"\("
+ r"\]"
+ r"\["
+ r"\}"
+ r"\{"
+ r"\|"
+ "\\"
+ r"\/"
+ r"\*"
+ r"]{1,}"
) # noqa
_optional_components = [
"tokenizer",
"text_encoder",
"prompt_enhancer_image_caption_model",
"prompt_enhancer_image_caption_processor",
"prompt_enhancer_llm_model",
"prompt_enhancer_llm_tokenizer",
]
model_cpu_offload_seq = "prompt_enhancer_image_caption_model->prompt_enhancer_llm_model->text_encoder->transformer->vae"
def __init__(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
vae: AutoencoderKL,
transformer: Transformer3DModel,
scheduler: DPMSolverMultistepScheduler,
patchifier: Patchifier,
prompt_enhancer_image_caption_model: AutoModelForCausalLM,
prompt_enhancer_image_caption_processor: AutoProcessor,
prompt_enhancer_llm_model: AutoModelForCausalLM,
prompt_enhancer_llm_tokenizer: AutoTokenizer,
allowed_inference_steps: Optional[List[float]] = None,
):
super().__init__()
self.register_modules(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
transformer=transformer,
scheduler=scheduler,
patchifier=patchifier,
prompt_enhancer_image_caption_model=prompt_enhancer_image_caption_model,
prompt_enhancer_image_caption_processor=prompt_enhancer_image_caption_processor,
prompt_enhancer_llm_model=prompt_enhancer_llm_model,
prompt_enhancer_llm_tokenizer=prompt_enhancer_llm_tokenizer,
)
self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(
self.vae
)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.allowed_inference_steps = allowed_inference_steps
def mask_text_embeddings(self, emb, mask):
if emb.shape[0] == 1:
keep_index = mask.sum().item()
return emb[:, :, :keep_index, :], keep_index
else:
masked_feature = emb * mask[:, None, :, None]
return masked_feature, emb.shape[2]
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool = True,
negative_prompt: str = "",
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
prompt_attention_mask: Optional[torch.FloatTensor] = None,
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
text_encoder_max_tokens: int = 256,
**kwargs,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
This should be "".
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
whether to use classifier free guidance or not
num_images_per_prompt (`int`, *optional*, defaults to 1):
number of images that should be generated per prompt
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings.
"""
if "mask_feature" in kwargs:
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
if device is None:
device = self._execution_device
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# See Section 3.1. of the paper.
max_length = (
text_encoder_max_tokens # TPU supports only lengths multiple of 128
)
if prompt_embeds is None:
assert (
self.text_encoder is not None
), "You should provide either prompt_embeds or self.text_encoder should not be None,"
text_enc_device = next(self.text_encoder.parameters()).device
prompt = self._text_preprocessing(prompt)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(
prompt, padding="longest", return_tensors="pt"
).input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[
-1
] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {max_length} tokens: {removed_text}"
)
prompt_attention_mask = text_inputs.attention_mask
prompt_attention_mask = prompt_attention_mask.to(text_enc_device)
prompt_attention_mask = prompt_attention_mask.to(device)
prompt_embeds = self.text_encoder(
text_input_ids.to(text_enc_device), attention_mask=prompt_attention_mask
)
prompt_embeds = prompt_embeds[0]
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
elif self.transformer is not None:
dtype = self.transformer.dtype
else:
dtype = None
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(
bs_embed * num_images_per_prompt, seq_len, -1
)
prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt)
prompt_attention_mask = prompt_attention_mask.view(
bs_embed * num_images_per_prompt, -1
)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens = self._text_preprocessing(negative_prompt)
uncond_tokens = uncond_tokens * batch_size
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
negative_prompt_attention_mask = uncond_input.attention_mask
negative_prompt_attention_mask = negative_prompt_attention_mask.to(
text_enc_device
)
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(text_enc_device),
attention_mask=negative_prompt_attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(
dtype=dtype, device=device
)
negative_prompt_embeds = negative_prompt_embeds.repeat(
1, num_images_per_prompt, 1
)
negative_prompt_embeds = negative_prompt_embeds.view(
batch_size * num_images_per_prompt, seq_len, -1
)
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
1, num_images_per_prompt
)
negative_prompt_attention_mask = negative_prompt_attention_mask.view(
bs_embed * num_images_per_prompt, -1
)
else:
negative_prompt_embeds = None
negative_prompt_attention_mask = None
return (
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
negative_prompt,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_attention_mask=None,
negative_prompt_attention_mask=None,
enhance_prompt=False,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (
not isinstance(prompt, str) and not isinstance(prompt, list)
):
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
if prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError(
"Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
)
if (
negative_prompt_embeds is not None
and negative_prompt_attention_mask is None
):
raise ValueError(
"Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
raise ValueError(
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
f" {negative_prompt_attention_mask.shape}."
)
if enhance_prompt:
assert (
self.prompt_enhancer_image_caption_model is not None
), "Image caption model must be initialized if enhance_prompt is True"
assert (
self.prompt_enhancer_image_caption_processor is not None
), "Image caption processor must be initialized if enhance_prompt is True"
assert (
self.prompt_enhancer_llm_model is not None
), "Text prompt enhancer model must be initialized if enhance_prompt is True"
assert (
self.prompt_enhancer_llm_tokenizer is not None
), "Text prompt enhancer tokenizer must be initialized if enhance_prompt is True"
def _text_preprocessing(self, text):
if not isinstance(text, (tuple, list)):
text = [text]
def process(text: str):
text = text.strip()
return text
return [process(t) for t in text]
@staticmethod
def add_noise_to_image_conditioning_latents(
t: float,
init_latents: torch.Tensor,
latents: torch.Tensor,
noise_scale: float,
conditioning_mask: torch.Tensor,
generator,
eps=1e-6,
):
"""
Add timestep-dependent noise to the hard-conditioning latents.
This helps with motion continuity, especially when conditioned on a single frame.
"""
noise = randn_tensor(
latents.shape,
generator=generator,
device=latents.device,
dtype=latents.dtype,
)
# Add noise only to hard-conditioning latents (conditioning_mask = 1.0)
need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1)
noised_latents = init_latents + noise_scale * noise * (t**2)
latents = torch.where(need_to_noise, noised_latents, latents)
return latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(
self,
latents: torch.Tensor | None,
media_items: torch.Tensor | None,
timestep: float,
latent_shape: torch.Size | Tuple[Any, ...],
dtype: torch.dtype,
device: torch.device,
generator: torch.Generator | List[torch.Generator],
vae_per_channel_normalize: bool = True,
):
"""
Prepare the initial latent tensor to be denoised.
The latents are either pure noise or a noised version of the encoded media items.
Args:
latents (`torch.FloatTensor` or `None`):
The latents to use (provided by the user) or `None` to create new latents.
media_items (`torch.FloatTensor` or `None`):
An image or video to be updated using img2img or vid2vid. The media item is encoded and noised.
timestep (`float`):
The timestep to noise the encoded media_items to.
latent_shape (`torch.Size`):
The target latent shape.
dtype (`torch.dtype`):
The target dtype.
device (`torch.device`):
The target device.
generator (`torch.Generator` or `List[torch.Generator]`):
Generator(s) to be used for the noising process.
vae_per_channel_normalize ('bool'):
When encoding the media_items, whether to normalize the latents per-channel.
Returns:
`torch.FloatTensor`: The latents to be used for the denoising process. This is a tensor of shape
(batch_size, num_channels, height, width).
"""
if isinstance(generator, list) and len(generator) != latent_shape[0]:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {latent_shape[0]}. Make sure the batch size matches the length of the generators."
)
# Initialize the latents with the given latents or encoded media item, if provided
assert (
latents is None or media_items is None
), "Cannot provide both latents and media_items. Please provide only one of the two."
assert (
latents is None and media_items is None or timestep < 1.0
), "Input media_item or latents are provided, but they will be replaced with noise."
if media_items is not None:
latents = vae_encode(
media_items.to(dtype=self.vae.dtype, device=self.vae.device),
self.vae,
vae_per_channel_normalize=vae_per_channel_normalize,
)
if latents is not None:
assert (
latents.shape == latent_shape
), f"Latents have to be of shape {latent_shape} but are {latents.shape}."
latents = latents.to(device=device, dtype=dtype)
# For backward compatibility, generate in the "patchified" shape and rearrange
b, c, f, h, w = latent_shape
noise = randn_tensor(
(b, f * h * w, c), generator=generator, device=device, dtype=dtype
)
noise = rearrange(noise, "b (f h w) c -> b c f h w", f=f, h=h, w=w)
# scale the initial noise by the standard deviation required by the scheduler
noise = noise * self.scheduler.init_noise_sigma
if latents is None:
latents = noise
else:
# Noise the latents to the required (first) timestep
latents = timestep * noise + (1 - timestep) * latents
return latents
@staticmethod
def classify_height_width_bin(
height: int, width: int, ratios: dict
) -> Tuple[int, int]:
"""Returns binned height and width."""
ar = float(height / width)
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
default_hw = ratios[closest_ratio]
return int(default_hw[0]), int(default_hw[1])
@staticmethod
def resize_and_crop_tensor(
samples: torch.Tensor, new_width: int, new_height: int
) -> torch.Tensor:
n_frames, orig_height, orig_width = samples.shape[-3:]
# Check if resizing is needed
if orig_height != new_height or orig_width != new_width:
ratio = max(new_height / orig_height, new_width / orig_width)
resized_width = int(orig_width * ratio)
resized_height = int(orig_height * ratio)
# Resize
samples = LTXVideoPipeline.resize_tensor(
samples, resized_height, resized_width
)
# Center Crop
start_x = (resized_width - new_width) // 2
end_x = start_x + new_width
start_y = (resized_height - new_height) // 2
end_y = start_y + new_height
samples = samples[..., start_y:end_y, start_x:end_x]
return samples
@staticmethod
def resize_tensor(media_items, height, width):
n_frames = media_items.shape[2]
if media_items.shape[-2:] != (height, width):
media_items = rearrange(media_items, "b c n h w -> (b n) c h w")
media_items = F.interpolate(
media_items,
size=(height, width),
mode="bilinear",
align_corners=False,
)
media_items = rearrange(media_items, "(b n) c h w -> b c n h w", n=n_frames)
return media_items
@torch.no_grad()
def __call__(
self,
height: int,
width: int,
num_frames: int,
frame_rate: float,
prompt: Union[str, List[str]] = None,
negative_prompt: str = "",
num_inference_steps: int = 20,
skip_initial_inference_steps: int = 0,
skip_final_inference_steps: int = 0,
timesteps: List[int] = None,
guidance_scale: Union[float, List[float]] = 4.5,
cfg_star_rescale: bool = False,
skip_layer_strategy: Optional[SkipLayerStrategy] = None,
skip_block_list: Optional[Union[List[List[int]], List[int]]] = None,
stg_scale: Union[float, List[float]] = 1.0,
rescaling_scale: Union[float, List[float]] = 0.7,
guidance_timesteps: Optional[List[int]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
prompt_attention_mask: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
conditioning_items: Optional[List[ConditioningItem]] = None,
decode_timestep: Union[List[float], float] = 0.0,
decode_noise_scale: Optional[List[float]] = None,
mixed_precision: bool = False,
offload_to_cpu: bool = False,
enhance_prompt: bool = False,
text_encoder_max_tokens: int = 256,
stochastic_sampling: bool = False,
media_items: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. If `timesteps` is provided, this parameter is ignored.
skip_initial_inference_steps (`int`, *optional*, defaults to 0):
The number of initial timesteps to skip. After calculating the timesteps, this number of timesteps will
be removed from the beginning of the timesteps list. Meaning the highest-timesteps values will not run.
skip_final_inference_steps (`int`, *optional*, defaults to 0):
The number of final timesteps to skip. After calculating the timesteps, this number of timesteps will
be removed from the end of the timesteps list. Meaning the lowest-timesteps values will not run.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 4.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
cfg_star_rescale (`bool`, *optional*, defaults to `False`):
If set to `True`, applies the CFG star rescale. Scales the negative prediction according to dot
product between positive and negative.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
height (`int`, *optional*, defaults to self.unet.config.sample_size):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size):
The width in pixels of the generated image.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. This negative prompt should be "". If not
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
Pre-generated attention mask for negative text embeddings.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
use_resolution_binning (`bool` defaults to `True`):
If set to `True`, the requested height and width are first mapped to the closest resolutions using
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
the requested resolution. Useful for generating non-square images.
enhance_prompt (`bool`, *optional*, defaults to `False`):
If set to `True`, the prompt is enhanced using a LLM model.
text_encoder_max_tokens (`int`, *optional*, defaults to `256`):
The maximum number of tokens to use for the text encoder.
stochastic_sampling (`bool`, *optional*, defaults to `False`):
If set to `True`, the sampling is stochastic. If set to `False`, the sampling is deterministic.
media_items ('torch.Tensor', *optional*):
The input media item used for image-to-image / video-to-video.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""
if "mask_feature" in kwargs:
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
is_video = kwargs.get("is_video", False)
self.check_inputs(
prompt,
height,
width,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
)
# 2. Default height and width to transformer
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
self.video_scale_factor = self.video_scale_factor if is_video else 1
vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", True)
image_cond_noise_scale = kwargs.get("image_cond_noise_scale", 0.0)
latent_height = height // self.vae_scale_factor
latent_width = width // self.vae_scale_factor
latent_num_frames = num_frames // self.video_scale_factor
if isinstance(self.vae, CausalVideoAutoencoder) and is_video:
latent_num_frames += 1
latent_shape = (
batch_size * num_images_per_prompt,
self.transformer.config.in_channels,
latent_num_frames,
latent_height,
latent_width,
)
# Prepare the list of denoising time-steps
retrieve_timesteps_kwargs = {}
if isinstance(self.scheduler, TimestepShifter):
retrieve_timesteps_kwargs["samples_shape"] = latent_shape
assert (
skip_initial_inference_steps == 0
or latents is not None
or media_items is not None
), (
f"skip_initial_inference_steps ({skip_initial_inference_steps}) is used for image-to-image/video-to-video - "
"media_item or latents should be provided."
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
skip_initial_inference_steps=skip_initial_inference_steps,
skip_final_inference_steps=skip_final_inference_steps,
**retrieve_timesteps_kwargs,
)
if self.allowed_inference_steps is not None:
for timestep in [round(x, 4) for x in timesteps.tolist()]:
assert (
timestep in self.allowed_inference_steps
), f"Invalid inference timestep {timestep}. Allowed timesteps are {self.allowed_inference_steps}."
if guidance_timesteps:
guidance_mapping = []
for timestep in timesteps:
indices = [
i for i, val in enumerate(guidance_timesteps) if val <= timestep
]
# assert len(indices) > 0, f"No guidance timestep found for {timestep}"
guidance_mapping.append(
indices[0] if len(indices) > 0 else (len(guidance_timesteps) - 1)
)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
if not isinstance(guidance_scale, List):
guidance_scale = [guidance_scale] * len(timesteps)
else:
guidance_scale = [
guidance_scale[guidance_mapping[i]] for i in range(len(timesteps))
]
# For simplicity, we are using a constant num_conds for all timesteps, so we need to zero
# out cases where the guidance scale should not be applied.
guidance_scale = [x if x > 1.0 else 0.0 for x in guidance_scale]
if not isinstance(stg_scale, List):
stg_scale = [stg_scale] * len(timesteps)
else:
stg_scale = [stg_scale[guidance_mapping[i]] for i in range(len(timesteps))]
if not isinstance(rescaling_scale, List):
rescaling_scale = [rescaling_scale] * len(timesteps)
else:
rescaling_scale = [
rescaling_scale[guidance_mapping[i]] for i in range(len(timesteps))
]
do_classifier_free_guidance = any(x > 1.0 for x in guidance_scale)
do_spatio_temporal_guidance = any(x > 0.0 for x in stg_scale)
do_rescaling = any(x != 1.0 for x in rescaling_scale)
num_conds = 1
if do_classifier_free_guidance:
num_conds += 1
if do_spatio_temporal_guidance:
num_conds += 1
# Normalize skip_block_list to always be None or a list of lists matching timesteps
if skip_block_list is not None:
# Convert single list to list of lists if needed
if len(skip_block_list) == 0 or not isinstance(skip_block_list[0], list):
skip_block_list = [skip_block_list] * len(timesteps)
else:
new_skip_block_list = []
for i, timestep in enumerate(timesteps):
new_skip_block_list.append(skip_block_list[guidance_mapping[i]])
skip_block_list = new_skip_block_list
# Prepare skip layer masks
skip_layer_masks: Optional[List[torch.Tensor]] = None
if do_spatio_temporal_guidance:
if skip_block_list is not None:
skip_layer_masks = [
self.transformer.create_skip_layer_mask(
batch_size, num_conds, num_conds - 1, skip_blocks
)
for skip_blocks in skip_block_list
]
if enhance_prompt:
self.prompt_enhancer_image_caption_model = (
self.prompt_enhancer_image_caption_model.to(self._execution_device)
)
self.prompt_enhancer_llm_model = self.prompt_enhancer_llm_model.to(
self._execution_device
)
prompt = generate_cinematic_prompt(
self.prompt_enhancer_image_caption_model,
self.prompt_enhancer_image_caption_processor,
self.prompt_enhancer_llm_model,
self.prompt_enhancer_llm_tokenizer,
prompt,
conditioning_items,
max_new_tokens=text_encoder_max_tokens,
)
# 3. Encode input prompt
if self.text_encoder is not None:
self.text_encoder = self.text_encoder.to(self._execution_device)
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt,
do_classifier_free_guidance,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
text_encoder_max_tokens=text_encoder_max_tokens,
)
if offload_to_cpu and self.text_encoder is not None:
self.text_encoder = self.text_encoder.cpu()
self.transformer = self.transformer.to(self._execution_device)
prompt_embeds_batch = prompt_embeds
prompt_attention_mask_batch = prompt_attention_mask
if do_classifier_free_guidance:
prompt_embeds_batch = torch.cat(
[negative_prompt_embeds, prompt_embeds], dim=0
)
prompt_attention_mask_batch = torch.cat(
[negative_prompt_attention_mask, prompt_attention_mask], dim=0
)
if do_spatio_temporal_guidance:
prompt_embeds_batch = torch.cat([prompt_embeds_batch, prompt_embeds], dim=0)
prompt_attention_mask_batch = torch.cat(
[
prompt_attention_mask_batch,
prompt_attention_mask,
],
dim=0,
)
# 4. Prepare the initial latents using the provided media and conditioning items
# Prepare the initial latents tensor, shape = (b, c, f, h, w)
latents = self.prepare_latents(
latents=latents,
media_items=media_items,
timestep=timesteps[0],
latent_shape=latent_shape,
dtype=prompt_embeds_batch.dtype,
device=device,
generator=generator,
vae_per_channel_normalize=vae_per_channel_normalize,
)
# Update the latents with the conditioning items and patchify them into (b, n, c)
latents, pixel_coords, conditioning_mask, num_cond_latents = (
self.prepare_conditioning(
conditioning_items=conditioning_items,
init_latents=latents,
num_frames=num_frames,
height=height,
width=width,
vae_per_channel_normalize=vae_per_channel_normalize,
generator=generator,
)
)
init_latents = latents.clone() # Used for image_cond_noise_update
pixel_coords = torch.cat([pixel_coords] * num_conds)
orig_conditioning_mask = conditioning_mask
if conditioning_mask is not None and is_video:
assert num_images_per_prompt == 1
conditioning_mask = torch.cat([conditioning_mask] * num_conds)
fractional_coords = pixel_coords.to(torch.float32)
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = max(
len(timesteps) - num_inference_steps * self.scheduler.order, 0
)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if conditioning_mask is not None and image_cond_noise_scale > 0.0:
latents = self.add_noise_to_image_conditioning_latents(
t,
init_latents,
latents,
image_cond_noise_scale,
orig_conditioning_mask,
generator,
)
latent_model_input = (
torch.cat([latents] * num_conds) if num_conds > 1 else latents
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
current_timestep = t
if not torch.is_tensor(current_timestep):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = latent_model_input.device.type == "mps"
if isinstance(current_timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
current_timestep = torch.tensor(
[current_timestep],
dtype=dtype,
device=latent_model_input.device,
)
elif len(current_timestep.shape) == 0:
current_timestep = current_timestep[None].to(
latent_model_input.device
)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
current_timestep = current_timestep.expand(
latent_model_input.shape[0]
).unsqueeze(-1)
if conditioning_mask is not None:
# Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
# and will start to be denoised when the current timestep is lower than their conditioning timestep.
current_timestep = torch.min(
current_timestep, 1.0 - conditioning_mask
)
# Choose the appropriate context manager based on `mixed_precision`
if mixed_precision:
context_manager = torch.autocast(device.type, dtype=torch.bfloat16)
else:
context_manager = nullcontext() # Dummy context manager
# predict noise model_output
with context_manager:
noise_pred = self.transformer(
latent_model_input.to(self.transformer.dtype),
indices_grid=fractional_coords,
encoder_hidden_states=prompt_embeds_batch.to(
self.transformer.dtype
),
encoder_attention_mask=prompt_attention_mask_batch,
timestep=current_timestep,
skip_layer_mask=(
skip_layer_masks[i]
if skip_layer_masks is not None
else None
),
skip_layer_strategy=skip_layer_strategy,
return_dict=False,
)[0]
# perform guidance
if do_spatio_temporal_guidance:
noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(
num_conds
)[-2:]
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_conds)[:2]
if cfg_star_rescale:
# Rescales the unconditional noise prediction using the projection of the conditional prediction onto it:
# α = (⟨ε_text, ε_uncond⟩ / ||ε_uncond||²), then ε_uncond ← α * ε_uncond
# where ε_text is the conditional noise prediction and ε_uncond is the unconditional one.
positive_flat = noise_pred_text.view(batch_size, -1)
negative_flat = noise_pred_uncond.view(batch_size, -1)
dot_product = torch.sum(
positive_flat * negative_flat, dim=1, keepdim=True
)
squared_norm = (
torch.sum(negative_flat**2, dim=1, keepdim=True) + 1e-8
)
alpha = dot_product / squared_norm
noise_pred_uncond = alpha * noise_pred_uncond
noise_pred = noise_pred_uncond + guidance_scale[i] * (
noise_pred_text - noise_pred_uncond
)
elif do_spatio_temporal_guidance:
noise_pred = noise_pred_text
if do_spatio_temporal_guidance:
noise_pred = noise_pred + stg_scale[i] * (
noise_pred_text - noise_pred_text_perturb
)
if do_rescaling and stg_scale[i] > 0.0:
noise_pred_text_std = noise_pred_text.view(batch_size, -1).std(
dim=1, keepdim=True
)
noise_pred_std = noise_pred.view(batch_size, -1).std(
dim=1, keepdim=True
)
factor = noise_pred_text_std / noise_pred_std
factor = rescaling_scale[i] * factor + (1 - rescaling_scale[i])
noise_pred = noise_pred * factor.view(batch_size, 1, 1)
current_timestep = current_timestep[:1]
# learned sigma
if (
self.transformer.config.out_channels // 2
== self.transformer.config.in_channels
):
noise_pred = noise_pred.chunk(2, dim=1)[0]
# compute previous image: x_t -> x_t-1
latents = self.denoising_step(
latents,
noise_pred,
current_timestep,
orig_conditioning_mask,
t,
extra_step_kwargs,
stochastic_sampling=stochastic_sampling,
)
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback_on_step_end is not None:
callback_on_step_end(self, i, t, {})
if offload_to_cpu:
self.transformer = self.transformer.cpu()
if self._execution_device == "cuda":
torch.cuda.empty_cache()
# Remove the added conditioning latents
latents = latents[:, num_cond_latents:]
latents = self.patchifier.unpatchify(
latents=latents,
output_height=latent_height,
output_width=latent_width,
out_channels=self.transformer.in_channels
// math.prod(self.patchifier.patch_size),
)
if output_type != "latent":
if self.vae.decoder.timestep_conditioning:
noise = torch.randn_like(latents)
if not isinstance(decode_timestep, list):
decode_timestep = [decode_timestep] * latents.shape[0]
if decode_noise_scale is None:
decode_noise_scale = decode_timestep
elif not isinstance(decode_noise_scale, list):
decode_noise_scale = [decode_noise_scale] * latents.shape[0]
decode_timestep = torch.tensor(decode_timestep).to(latents.device)
decode_noise_scale = torch.tensor(decode_noise_scale).to(
latents.device
)[:, None, None, None, None]
latents = (
latents * (1 - decode_noise_scale) + noise * decode_noise_scale
)
else:
decode_timestep = None
image = vae_decode(
latents,
self.vae,
is_video,
vae_per_channel_normalize=kwargs["vae_per_channel_normalize"],
timestep=decode_timestep,
)
image = self.image_processor.postprocess(image, output_type=output_type)
else:
image = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
def denoising_step(
self,
latents: torch.Tensor,
noise_pred: torch.Tensor,
current_timestep: torch.Tensor,
conditioning_mask: torch.Tensor,
t: float,
extra_step_kwargs,
t_eps=1e-6,
stochastic_sampling=False,
):
"""
Perform the denoising step for the required tokens, based on the current timestep and
conditioning mask:
Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
and will start to be denoised when the current timestep is equal or lower than their
conditioning timestep.
(hard-conditioning latents with conditioning_mask = 1.0 are never denoised)
"""
# Denoise the latents using the scheduler
denoised_latents = self.scheduler.step(
noise_pred,
t if current_timestep is None else current_timestep,
latents,
**extra_step_kwargs,
return_dict=False,
stochastic_sampling=stochastic_sampling,
)[0]
if conditioning_mask is None:
return denoised_latents
tokens_to_denoise_mask = (t - t_eps < (1.0 - conditioning_mask)).unsqueeze(-1)
return torch.where(tokens_to_denoise_mask, denoised_latents, latents)
def prepare_conditioning(
self,
conditioning_items: Optional[List[ConditioningItem]],
init_latents: torch.Tensor,
num_frames: int,
height: int,
width: int,
vae_per_channel_normalize: bool = False,
generator=None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
"""
Prepare conditioning tokens based on the provided conditioning items.
This method encodes provided conditioning items (video frames or single frames) into latents
and integrates them with the initial latent tensor. It also calculates corresponding pixel
coordinates, a mask indicating the influence of conditioning latents, and the total number of
conditioning latents.
Args:
conditioning_items (Optional[List[ConditioningItem]]): A list of ConditioningItem objects.
init_latents (torch.Tensor): The initial latent tensor of shape (b, c, f_l, h_l, w_l), where
`f_l` is the number of latent frames, and `h_l` and `w_l` are latent spatial dimensions.
num_frames, height, width: The dimensions of the generated video.
vae_per_channel_normalize (bool, optional): Whether to normalize channels during VAE encoding.
Defaults to `False`.
generator: The random generator
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
- `init_latents` (torch.Tensor): The updated latent tensor including conditioning latents,
patchified into (b, n, c) shape.
- `init_pixel_coords` (torch.Tensor): The pixel coordinates corresponding to the updated
latent tensor.
- `conditioning_mask` (torch.Tensor): A mask indicating the conditioning-strength of each
latent token.
- `num_cond_latents` (int): The total number of latent tokens added from conditioning items.
Raises:
AssertionError: If input shapes, dimensions, or conditions for applying conditioning are invalid.
"""
assert isinstance(self.vae, CausalVideoAutoencoder)
if conditioning_items:
batch_size, _, num_latent_frames = init_latents.shape[:3]
init_conditioning_mask = torch.zeros(
init_latents[:, 0, :, :, :].shape,
dtype=torch.float32,
device=init_latents.device,
)
extra_conditioning_latents = []
extra_conditioning_pixel_coords = []
extra_conditioning_mask = []
extra_conditioning_num_latents = 0 # Number of extra conditioning latents added (should be removed before decoding)
# Process each conditioning item
for conditioning_item in conditioning_items:
conditioning_item = self._resize_conditioning_item(
conditioning_item, height, width
)
media_item = conditioning_item.media_item
media_frame_number = conditioning_item.media_frame_number
strength = conditioning_item.conditioning_strength
assert media_item.ndim == 5 # (b, c, f, h, w)
b, c, n_frames, h, w = media_item.shape
assert (
height == h and width == w
) or media_frame_number == 0, f"Dimensions do not match: {height}x{width} != {h}x{w} - allowed only when media_frame_number == 0"
assert n_frames % 8 == 1
assert (
media_frame_number >= 0
and media_frame_number + n_frames <= num_frames
)
# Encode the provided conditioning media item
media_item_latents = vae_encode(
media_item.to(dtype=self.vae.dtype, device=self.vae.device),
self.vae,
vae_per_channel_normalize=vae_per_channel_normalize,
).to(dtype=init_latents.dtype)
# Handle the different conditioning cases
if media_frame_number == 0:
# Get the target spatial position of the latent conditioning item
media_item_latents, l_x, l_y = self._get_latent_spatial_position(
media_item_latents,
conditioning_item,
height,
width,
strip_latent_border=True,
)
b, c_l, f_l, h_l, w_l = media_item_latents.shape
# First frame or sequence - just update the initial noise latents and the mask
init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l] = (
torch.lerp(
init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l],
media_item_latents,
strength,
)
)
init_conditioning_mask[
:, :f_l, l_y : l_y + h_l, l_x : l_x + w_l
] = strength
else:
# Non-first frame or sequence
if n_frames > 1:
# Handle non-first sequence.
# Encoded latents are either fully consumed, or the prefix is handled separately below.
(
init_latents,
init_conditioning_mask,
media_item_latents,
) = self._handle_non_first_conditioning_sequence(
init_latents,
init_conditioning_mask,
media_item_latents,
media_frame_number,
strength,
)
# Single frame or sequence-prefix latents
if media_item_latents is not None:
noise = randn_tensor(
media_item_latents.shape,
generator=generator,
device=media_item_latents.device,
dtype=media_item_latents.dtype,
)
media_item_latents = torch.lerp(
noise, media_item_latents, strength
)
# Patchify the extra conditioning latents and calculate their pixel coordinates
media_item_latents, latent_coords = self.patchifier.patchify(
latents=media_item_latents
)
pixel_coords = latent_to_pixel_coords(
latent_coords,
self.vae,
causal_fix=self.transformer.config.causal_temporal_positioning,
)
# Update the frame numbers to match the target frame number
pixel_coords[:, 0] += media_frame_number
extra_conditioning_num_latents += media_item_latents.shape[1]
conditioning_mask = torch.full(
media_item_latents.shape[:2],
strength,
dtype=torch.float32,
device=init_latents.device,
)
extra_conditioning_latents.append(media_item_latents)
extra_conditioning_pixel_coords.append(pixel_coords)
extra_conditioning_mask.append(conditioning_mask)
# Patchify the updated latents and calculate their pixel coordinates
init_latents, init_latent_coords = self.patchifier.patchify(
latents=init_latents
)
init_pixel_coords = latent_to_pixel_coords(
init_latent_coords,
self.vae,
causal_fix=self.transformer.config.causal_temporal_positioning,
)
if not conditioning_items:
return init_latents, init_pixel_coords, None, 0
init_conditioning_mask, _ = self.patchifier.patchify(
latents=init_conditioning_mask.unsqueeze(1)
)
init_conditioning_mask = init_conditioning_mask.squeeze(-1)
if extra_conditioning_latents:
# Stack the extra conditioning latents, pixel coordinates and mask
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
init_pixel_coords = torch.cat(
[*extra_conditioning_pixel_coords, init_pixel_coords], dim=2
)
init_conditioning_mask = torch.cat(
[*extra_conditioning_mask, init_conditioning_mask], dim=1
)
if self.transformer.use_tpu_flash_attention:
# When flash attention is used, keep the original number of tokens by removing
# tokens from the end.
init_latents = init_latents[:, :-extra_conditioning_num_latents]
init_pixel_coords = init_pixel_coords[
:, :, :-extra_conditioning_num_latents
]
init_conditioning_mask = init_conditioning_mask[
:, :-extra_conditioning_num_latents
]
return (
init_latents,
init_pixel_coords,
init_conditioning_mask,
extra_conditioning_num_latents,
)
@staticmethod
def _resize_conditioning_item(
conditioning_item: ConditioningItem,
height: int,
width: int,
):
if conditioning_item.media_x or conditioning_item.media_y:
raise ValueError(
"Provide media_item in the target size for spatial conditioning."
)
new_conditioning_item = copy.copy(conditioning_item)
new_conditioning_item.media_item = LTXVideoPipeline.resize_tensor(
conditioning_item.media_item, height, width
)
return new_conditioning_item
def _get_latent_spatial_position(
self,
latents: torch.Tensor,
conditioning_item: ConditioningItem,
height: int,
width: int,
strip_latent_border,
):
"""
Get the spatial position of the conditioning item in the latent space.
If requested, strip the conditioning latent borders that do not align with target borders.
(border latents look different then other latents and might confuse the model)
"""
scale = self.vae_scale_factor
h, w = conditioning_item.media_item.shape[-2:]
assert (
h <= height and w <= width
), f"Conditioning item size {h}x{w} is larger than target size {height}x{width}"
assert h % scale == 0 and w % scale == 0
# Compute the start and end spatial positions of the media item
x_start, y_start = conditioning_item.media_x, conditioning_item.media_y
x_start = (width - w) // 2 if x_start is None else x_start
y_start = (height - h) // 2 if y_start is None else y_start
x_end, y_end = x_start + w, y_start + h
assert (
x_end <= width and y_end <= height
), f"Conditioning item {x_start}:{x_end}x{y_start}:{y_end} is out of bounds for target size {width}x{height}"
if strip_latent_border:
# Strip one latent from left/right and/or top/bottom, update x, y accordingly
if x_start > 0:
x_start += scale
latents = latents[:, :, :, :, 1:]
if y_start > 0:
y_start += scale
latents = latents[:, :, :, 1:, :]
if x_end < width:
latents = latents[:, :, :, :, :-1]
if y_end < height:
latents = latents[:, :, :, :-1, :]
return latents, x_start // scale, y_start // scale
@staticmethod
def _handle_non_first_conditioning_sequence(
init_latents: torch.Tensor,
init_conditioning_mask: torch.Tensor,
latents: torch.Tensor,
media_frame_number: int,
strength: float,
num_prefix_latent_frames: int = 2,
prefix_latents_mode: str = "concat",
prefix_soft_conditioning_strength: float = 0.15,
):
"""
Special handling for a conditioning sequence that does not start on the first frame.
The special handling is required to allow a short encoded video to be used as middle
(or last) sequence in a longer video.
Args:
init_latents (torch.Tensor): The initial noise latents to be updated.
init_conditioning_mask (torch.Tensor): The initial conditioning mask to be updated.
latents (torch.Tensor): The encoded conditioning item.
media_frame_number (int): The target frame number of the first frame in the conditioning sequence.
strength (float): The conditioning strength for the conditioning latents.
num_prefix_latent_frames (int, optional): The length of the sequence prefix, to be handled
separately. Defaults to 2.
prefix_latents_mode (str, optional): Special treatment for prefix (boundary) latents.
- "drop": Drop the prefix latents.
- "soft": Use the prefix latents, but with soft-conditioning
- "concat": Add the prefix latents as extra tokens (like single frames)
prefix_soft_conditioning_strength (float, optional): The strength of the soft-conditioning for
the prefix latents, relevant if `prefix_latents_mode` is "soft". Defaults to 0.1.
"""
f_l = latents.shape[2]
f_l_p = num_prefix_latent_frames
assert f_l >= f_l_p
assert media_frame_number % 8 == 0
if f_l > f_l_p:
# Insert the conditioning latents **excluding the prefix** into the sequence
f_l_start = media_frame_number // 8 + f_l_p
f_l_end = f_l_start + f_l - f_l_p
init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
init_latents[:, :, f_l_start:f_l_end],
latents[:, :, f_l_p:],
strength,
)
# Mark these latent frames as conditioning latents
init_conditioning_mask[:, f_l_start:f_l_end] = strength
# Handle the prefix-latents
if prefix_latents_mode == "soft":
if f_l_p > 1:
# Drop the first (single-frame) latent and soft-condition the remaining prefix
f_l_start = media_frame_number // 8 + 1
f_l_end = f_l_start + f_l_p - 1
strength = min(prefix_soft_conditioning_strength, strength)
init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
init_latents[:, :, f_l_start:f_l_end],
latents[:, :, 1:f_l_p],
strength,
)
# Mark these latent frames as conditioning latents
init_conditioning_mask[:, f_l_start:f_l_end] = strength
latents = None # No more latents to handle
elif prefix_latents_mode == "drop":
# Drop the prefix latents
latents = None
elif prefix_latents_mode == "concat":
# Pass-on the prefix latents to be handled as extra conditioning frames
latents = latents[:, :, :f_l_p]
else:
raise ValueError(f"Invalid prefix_latents_mode: {prefix_latents_mode}")
return (
init_latents,
init_conditioning_mask,
latents,
)
def trim_conditioning_sequence(
self, start_frame: int, sequence_num_frames: int, target_num_frames: int
):
"""
Trim a conditioning sequence to the allowed number of frames.
Args:
start_frame (int): The target frame number of the first frame in the sequence.
sequence_num_frames (int): The number of frames in the sequence.
target_num_frames (int): The target number of frames in the generated video.
Returns:
int: updated sequence length
"""
scale_factor = self.video_scale_factor
num_frames = min(sequence_num_frames, target_num_frames - start_frame)
# Trim down to a multiple of temporal_scale_factor frames plus 1
num_frames = (num_frames - 1) // scale_factor * scale_factor + 1
return num_frames
def adain_filter_latent(
latents: torch.Tensor, reference_latents: torch.Tensor, factor=1.0
):
"""
Applies Adaptive Instance Normalization (AdaIN) to a latent tensor based on
statistics from a reference latent tensor.
Args:
latent (torch.Tensor): Input latents to normalize
reference_latent (torch.Tensor): The reference latents providing style statistics.
factor (float): Blending factor between original and transformed latent.
Range: -10.0 to 10.0, Default: 1.0
Returns:
torch.Tensor: The transformed latent tensor
"""
result = latents.clone()
for i in range(latents.size(0)):
for c in range(latents.size(1)):
r_sd, r_mean = torch.std_mean(
reference_latents[i, c], dim=None
) # index by original dim order
i_sd, i_mean = torch.std_mean(result[i, c], dim=None)
result[i, c] = ((result[i, c] - i_mean) / i_sd) * r_sd + r_mean
result = torch.lerp(latents, result, factor)
return result
class LTXMultiScalePipeline:
def _upsample_latents(
self, latest_upsampler: LatentUpsampler, latents: torch.Tensor
):
assert latents.device == latest_upsampler.device
latents = un_normalize_latents(
latents, self.vae, vae_per_channel_normalize=True
)
upsampled_latents = latest_upsampler(latents)
upsampled_latents = normalize_latents(
upsampled_latents, self.vae, vae_per_channel_normalize=True
)
return upsampled_latents
def __init__(
self, video_pipeline: LTXVideoPipeline, latent_upsampler: LatentUpsampler
):
self.video_pipeline = video_pipeline
self.vae = video_pipeline.vae
self.latent_upsampler = latent_upsampler
def __call__(
self,
downscale_factor: float,
first_pass: dict,
second_pass: dict,
*args: Any,
**kwargs: Any,
) -> Any:
original_kwargs = kwargs.copy()
original_output_type = kwargs["output_type"]
original_width = kwargs["width"]
original_height = kwargs["height"]
x_width = int(kwargs["width"] * downscale_factor)
downscaled_width = x_width - (x_width % self.video_pipeline.vae_scale_factor)
x_height = int(kwargs["height"] * downscale_factor)
downscaled_height = x_height - (x_height % self.video_pipeline.vae_scale_factor)
kwargs["output_type"] = "latent"
kwargs["width"] = downscaled_width
kwargs["height"] = downscaled_height
kwargs.update(**first_pass)
result = self.video_pipeline(*args, **kwargs)
latents = result.images
upsampled_latents = self._upsample_latents(self.latent_upsampler, latents)
upsampled_latents = adain_filter_latent(
latents=upsampled_latents, reference_latents=latents
)
kwargs = original_kwargs
kwargs["latents"] = upsampled_latents
kwargs["output_type"] = original_output_type
kwargs["width"] = downscaled_width * 2
kwargs["height"] = downscaled_height * 2
kwargs.update(**second_pass)
result = self.video_pipeline(*args, **kwargs)
if original_output_type != "latent":
num_frames = result.images.shape[2]
videos = rearrange(result.images, "b c f h w -> (b f) c h w")
videos = F.interpolate(
videos,
size=(original_height, original_width),
mode="bilinear",
align_corners=False,
)
videos = rearrange(videos, "(b f) c h w -> b c f h w", f=num_frames)
result.images = videos
return result
|