File size: 81,011 Bytes
833590f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
import copy
import inspect
import math
import re
from contextlib import nullcontext
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import deprecate, logging
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from transformers import (
    T5EncoderModel,
    T5Tokenizer,
    AutoModelForCausalLM,
    AutoProcessor,
    AutoTokenizer,
)

from ltx_video.models.autoencoders.causal_video_autoencoder import (
    CausalVideoAutoencoder,
)
from ltx_video.models.autoencoders.vae_encode import (
    get_vae_size_scale_factor,
    latent_to_pixel_coords,
    vae_decode,
    vae_encode,
)
from ltx_video.models.transformers.symmetric_patchifier import Patchifier
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.schedulers.rf import TimestepShifter
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.utils.prompt_enhance_utils import generate_cinematic_prompt
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
from ltx_video.models.autoencoders.vae_encode import (
    un_normalize_latents,
    normalize_latents,
)


try:
    import torch_xla.distributed.spmd as xs
except ImportError:
    xs = None

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


ASPECT_RATIO_1024_BIN = {
    "0.25": [512.0, 2048.0],
    "0.28": [512.0, 1856.0],
    "0.32": [576.0, 1792.0],
    "0.33": [576.0, 1728.0],
    "0.35": [576.0, 1664.0],
    "0.4": [640.0, 1600.0],
    "0.42": [640.0, 1536.0],
    "0.48": [704.0, 1472.0],
    "0.5": [704.0, 1408.0],
    "0.52": [704.0, 1344.0],
    "0.57": [768.0, 1344.0],
    "0.6": [768.0, 1280.0],
    "0.68": [832.0, 1216.0],
    "0.72": [832.0, 1152.0],
    "0.78": [896.0, 1152.0],
    "0.82": [896.0, 1088.0],
    "0.88": [960.0, 1088.0],
    "0.94": [960.0, 1024.0],
    "1.0": [1024.0, 1024.0],
    "1.07": [1024.0, 960.0],
    "1.13": [1088.0, 960.0],
    "1.21": [1088.0, 896.0],
    "1.29": [1152.0, 896.0],
    "1.38": [1152.0, 832.0],
    "1.46": [1216.0, 832.0],
    "1.67": [1280.0, 768.0],
    "1.75": [1344.0, 768.0],
    "2.0": [1408.0, 704.0],
    "2.09": [1472.0, 704.0],
    "2.4": [1536.0, 640.0],
    "2.5": [1600.0, 640.0],
    "3.0": [1728.0, 576.0],
    "4.0": [2048.0, 512.0],
}

ASPECT_RATIO_512_BIN = {
    "0.25": [256.0, 1024.0],
    "0.28": [256.0, 928.0],
    "0.32": [288.0, 896.0],
    "0.33": [288.0, 864.0],
    "0.35": [288.0, 832.0],
    "0.4": [320.0, 800.0],
    "0.42": [320.0, 768.0],
    "0.48": [352.0, 736.0],
    "0.5": [352.0, 704.0],
    "0.52": [352.0, 672.0],
    "0.57": [384.0, 672.0],
    "0.6": [384.0, 640.0],
    "0.68": [416.0, 608.0],
    "0.72": [416.0, 576.0],
    "0.78": [448.0, 576.0],
    "0.82": [448.0, 544.0],
    "0.88": [480.0, 544.0],
    "0.94": [480.0, 512.0],
    "1.0": [512.0, 512.0],
    "1.07": [512.0, 480.0],
    "1.13": [544.0, 480.0],
    "1.21": [544.0, 448.0],
    "1.29": [576.0, 448.0],
    "1.38": [576.0, 416.0],
    "1.46": [608.0, 416.0],
    "1.67": [640.0, 384.0],
    "1.75": [672.0, 384.0],
    "2.0": [704.0, 352.0],
    "2.09": [736.0, 352.0],
    "2.4": [768.0, 320.0],
    "2.5": [800.0, 320.0],
    "3.0": [864.0, 288.0],
    "4.0": [1024.0, 256.0],
}


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    skip_initial_inference_steps: int = 0,
    skip_final_inference_steps: int = 0,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used,
            `timesteps` must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
            timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
            must be `None`.
        max_timestep ('float', *optional*, defaults to 1.0):
            The initial noising level for image-to-image/video-to-video. The list if timestamps will be
            truncated to start with a timestamp greater or equal to this.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps

        if (
            skip_initial_inference_steps < 0
            or skip_final_inference_steps < 0
            or skip_initial_inference_steps + skip_final_inference_steps
            >= num_inference_steps
        ):
            raise ValueError(
                "invalid skip inference step values: must be non-negative and the sum of skip_initial_inference_steps and skip_final_inference_steps must be less than the number of inference steps"
            )

        timesteps = timesteps[
            skip_initial_inference_steps : len(timesteps) - skip_final_inference_steps
        ]
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        num_inference_steps = len(timesteps)

    return timesteps, num_inference_steps


@dataclass
class ConditioningItem:
    """
    Defines a single frame-conditioning item - a single frame or a sequence of frames.

    Attributes:
        media_item (torch.Tensor): shape=(b, 3, f, h, w). The media item to condition on.
        media_frame_number (int): The start-frame number of the media item in the generated video.
        conditioning_strength (float): The strength of the conditioning (1.0 = full conditioning).
        media_x (Optional[int]): Optional left x coordinate of the media item in the generated frame.
        media_y (Optional[int]): Optional top y coordinate of the media item in the generated frame.
    """

    media_item: torch.Tensor
    media_frame_number: int
    conditioning_strength: float
    media_x: Optional[int] = None
    media_y: Optional[int] = None


class LTXVideoPipeline(DiffusionPipeline):
    r"""
    Pipeline for text-to-image generation using LTX-Video.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`T5EncoderModel`]):
            Frozen text-encoder. This uses
            [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
            [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
        tokenizer (`T5Tokenizer`):
            Tokenizer of class
            [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
        transformer ([`Transformer2DModel`]):
            A text conditioned `Transformer2DModel` to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
    """

    bad_punct_regex = re.compile(
        r"["
        + "#®•©™&@·º½¾¿¡§~"
        + r"\)"
        + r"\("
        + r"\]"
        + r"\["
        + r"\}"
        + r"\{"
        + r"\|"
        + "\\"
        + r"\/"
        + r"\*"
        + r"]{1,}"
    )  # noqa

    _optional_components = [
        "tokenizer",
        "text_encoder",
        "prompt_enhancer_image_caption_model",
        "prompt_enhancer_image_caption_processor",
        "prompt_enhancer_llm_model",
        "prompt_enhancer_llm_tokenizer",
    ]
    model_cpu_offload_seq = "prompt_enhancer_image_caption_model->prompt_enhancer_llm_model->text_encoder->transformer->vae"

    def __init__(
        self,
        tokenizer: T5Tokenizer,
        text_encoder: T5EncoderModel,
        vae: AutoencoderKL,
        transformer: Transformer3DModel,
        scheduler: DPMSolverMultistepScheduler,
        patchifier: Patchifier,
        prompt_enhancer_image_caption_model: AutoModelForCausalLM,
        prompt_enhancer_image_caption_processor: AutoProcessor,
        prompt_enhancer_llm_model: AutoModelForCausalLM,
        prompt_enhancer_llm_tokenizer: AutoTokenizer,
        allowed_inference_steps: Optional[List[float]] = None,
    ):
        super().__init__()

        self.register_modules(
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            vae=vae,
            transformer=transformer,
            scheduler=scheduler,
            patchifier=patchifier,
            prompt_enhancer_image_caption_model=prompt_enhancer_image_caption_model,
            prompt_enhancer_image_caption_processor=prompt_enhancer_image_caption_processor,
            prompt_enhancer_llm_model=prompt_enhancer_llm_model,
            prompt_enhancer_llm_tokenizer=prompt_enhancer_llm_tokenizer,
        )

        self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(
            self.vae
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

        self.allowed_inference_steps = allowed_inference_steps

    def mask_text_embeddings(self, emb, mask):
        if emb.shape[0] == 1:
            keep_index = mask.sum().item()
            return emb[:, :, :keep_index, :], keep_index
        else:
            masked_feature = emb * mask[:, None, :, None]
            return masked_feature, emb.shape[2]

    # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        do_classifier_free_guidance: bool = True,
        negative_prompt: str = "",
        num_images_per_prompt: int = 1,
        device: Optional[torch.device] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        prompt_attention_mask: Optional[torch.FloatTensor] = None,
        negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
        text_encoder_max_tokens: int = 256,
        **kwargs,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
                instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
                This should be "".
            do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
                whether to use classifier free guidance or not
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                number of images that should be generated per prompt
            device: (`torch.device`, *optional*):
                torch device to place the resulting embeddings on
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings.
        """

        if "mask_feature" in kwargs:
            deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
            deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)

        if device is None:
            device = self._execution_device

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # See Section 3.1. of the paper.
        max_length = (
            text_encoder_max_tokens  # TPU supports only lengths multiple of 128
        )
        if prompt_embeds is None:
            assert (
                self.text_encoder is not None
            ), "You should provide either prompt_embeds or self.text_encoder should not be None,"
            text_enc_device = next(self.text_encoder.parameters()).device
            prompt = self._text_preprocessing(prompt)
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(
                prompt, padding="longest", return_tensors="pt"
            ).input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[
                -1
            ] and not torch.equal(text_input_ids, untruncated_ids):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {max_length} tokens: {removed_text}"
                )

            prompt_attention_mask = text_inputs.attention_mask
            prompt_attention_mask = prompt_attention_mask.to(text_enc_device)
            prompt_attention_mask = prompt_attention_mask.to(device)

            prompt_embeds = self.text_encoder(
                text_input_ids.to(text_enc_device), attention_mask=prompt_attention_mask
            )
            prompt_embeds = prompt_embeds[0]

        if self.text_encoder is not None:
            dtype = self.text_encoder.dtype
        elif self.transformer is not None:
            dtype = self.transformer.dtype
        else:
            dtype = None

        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(
            bs_embed * num_images_per_prompt, seq_len, -1
        )
        prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt)
        prompt_attention_mask = prompt_attention_mask.view(
            bs_embed * num_images_per_prompt, -1
        )

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens = self._text_preprocessing(negative_prompt)
            uncond_tokens = uncond_tokens * batch_size
            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_attention_mask=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            negative_prompt_attention_mask = uncond_input.attention_mask
            negative_prompt_attention_mask = negative_prompt_attention_mask.to(
                text_enc_device
            )

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(text_enc_device),
                attention_mask=negative_prompt_attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(
                dtype=dtype, device=device
            )

            negative_prompt_embeds = negative_prompt_embeds.repeat(
                1, num_images_per_prompt, 1
            )
            negative_prompt_embeds = negative_prompt_embeds.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )

            negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
                1, num_images_per_prompt
            )
            negative_prompt_attention_mask = negative_prompt_attention_mask.view(
                bs_embed * num_images_per_prompt, -1
            )
        else:
            negative_prompt_embeds = None
            negative_prompt_attention_mask = None

        return (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        negative_prompt,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        prompt_attention_mask=None,
        negative_prompt_attention_mask=None,
        enhance_prompt=False,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (
            not isinstance(prompt, str) and not isinstance(prompt, list)
        ):
            raise ValueError(
                f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
            )

        if prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and prompt_attention_mask is None:
            raise ValueError(
                "Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
            )

        if (
            negative_prompt_embeds is not None
            and negative_prompt_attention_mask is None
        ):
            raise ValueError(
                "Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )
            if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
                raise ValueError(
                    "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
                    f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
                    f" {negative_prompt_attention_mask.shape}."
                )

        if enhance_prompt:
            assert (
                self.prompt_enhancer_image_caption_model is not None
            ), "Image caption model must be initialized if enhance_prompt is True"
            assert (
                self.prompt_enhancer_image_caption_processor is not None
            ), "Image caption processor must be initialized if enhance_prompt is True"
            assert (
                self.prompt_enhancer_llm_model is not None
            ), "Text prompt enhancer model must be initialized if enhance_prompt is True"
            assert (
                self.prompt_enhancer_llm_tokenizer is not None
            ), "Text prompt enhancer tokenizer must be initialized if enhance_prompt is True"

    def _text_preprocessing(self, text):
        if not isinstance(text, (tuple, list)):
            text = [text]

        def process(text: str):
            text = text.strip()
            return text

        return [process(t) for t in text]

    @staticmethod
    def add_noise_to_image_conditioning_latents(
        t: float,
        init_latents: torch.Tensor,
        latents: torch.Tensor,
        noise_scale: float,
        conditioning_mask: torch.Tensor,
        generator,
        eps=1e-6,
    ):
        """
        Add timestep-dependent noise to the hard-conditioning latents.
        This helps with motion continuity, especially when conditioned on a single frame.
        """
        noise = randn_tensor(
            latents.shape,
            generator=generator,
            device=latents.device,
            dtype=latents.dtype,
        )
        # Add noise only to hard-conditioning latents (conditioning_mask = 1.0)
        need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1)
        noised_latents = init_latents + noise_scale * noise * (t**2)
        latents = torch.where(need_to_noise, noised_latents, latents)
        return latents

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(
        self,
        latents: torch.Tensor | None,
        media_items: torch.Tensor | None,
        timestep: float,
        latent_shape: torch.Size | Tuple[Any, ...],
        dtype: torch.dtype,
        device: torch.device,
        generator: torch.Generator | List[torch.Generator],
        vae_per_channel_normalize: bool = True,
    ):
        """
        Prepare the initial latent tensor to be denoised.
        The latents are either pure noise or a noised version of the encoded media items.
        Args:
            latents (`torch.FloatTensor` or `None`):
                The latents to use (provided by the user) or `None` to create new latents.
            media_items (`torch.FloatTensor` or `None`):
                An image or video to be updated using img2img or vid2vid. The media item is encoded and noised.
            timestep (`float`):
                The timestep to noise the encoded media_items to.
            latent_shape (`torch.Size`):
                The target latent shape.
            dtype (`torch.dtype`):
                The target dtype.
            device (`torch.device`):
                The target device.
            generator (`torch.Generator` or `List[torch.Generator]`):
                Generator(s) to be used for the noising process.
            vae_per_channel_normalize ('bool'):
                When encoding the media_items, whether to normalize the latents per-channel.
        Returns:
            `torch.FloatTensor`: The latents to be used for the denoising process. This is a tensor of shape
            (batch_size, num_channels, height, width).
        """
        if isinstance(generator, list) and len(generator) != latent_shape[0]:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {latent_shape[0]}. Make sure the batch size matches the length of the generators."
            )

        # Initialize the latents with the given latents or encoded media item, if provided
        assert (
            latents is None or media_items is None
        ), "Cannot provide both latents and media_items. Please provide only one of the two."

        assert (
            latents is None and media_items is None or timestep < 1.0
        ), "Input media_item or latents are provided, but they will be replaced with noise."

        if media_items is not None:
            latents = vae_encode(
                media_items.to(dtype=self.vae.dtype, device=self.vae.device),
                self.vae,
                vae_per_channel_normalize=vae_per_channel_normalize,
            )
        if latents is not None:
            assert (
                latents.shape == latent_shape
            ), f"Latents have to be of shape {latent_shape} but are {latents.shape}."
            latents = latents.to(device=device, dtype=dtype)

        # For backward compatibility, generate in the "patchified" shape and rearrange
        b, c, f, h, w = latent_shape
        noise = randn_tensor(
            (b, f * h * w, c), generator=generator, device=device, dtype=dtype
        )
        noise = rearrange(noise, "b (f h w) c -> b c f h w", f=f, h=h, w=w)

        # scale the initial noise by the standard deviation required by the scheduler
        noise = noise * self.scheduler.init_noise_sigma

        if latents is None:
            latents = noise
        else:
            # Noise the latents to the required (first) timestep
            latents = timestep * noise + (1 - timestep) * latents

        return latents

    @staticmethod
    def classify_height_width_bin(
        height: int, width: int, ratios: dict
    ) -> Tuple[int, int]:
        """Returns binned height and width."""
        ar = float(height / width)
        closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
        default_hw = ratios[closest_ratio]
        return int(default_hw[0]), int(default_hw[1])

    @staticmethod
    def resize_and_crop_tensor(
        samples: torch.Tensor, new_width: int, new_height: int
    ) -> torch.Tensor:
        n_frames, orig_height, orig_width = samples.shape[-3:]

        # Check if resizing is needed
        if orig_height != new_height or orig_width != new_width:
            ratio = max(new_height / orig_height, new_width / orig_width)
            resized_width = int(orig_width * ratio)
            resized_height = int(orig_height * ratio)

            # Resize
            samples = LTXVideoPipeline.resize_tensor(
                samples, resized_height, resized_width
            )

            # Center Crop
            start_x = (resized_width - new_width) // 2
            end_x = start_x + new_width
            start_y = (resized_height - new_height) // 2
            end_y = start_y + new_height
            samples = samples[..., start_y:end_y, start_x:end_x]

        return samples

    @staticmethod
    def resize_tensor(media_items, height, width):
        n_frames = media_items.shape[2]
        if media_items.shape[-2:] != (height, width):
            media_items = rearrange(media_items, "b c n h w -> (b n) c h w")
            media_items = F.interpolate(
                media_items,
                size=(height, width),
                mode="bilinear",
                align_corners=False,
            )
            media_items = rearrange(media_items, "(b n) c h w -> b c n h w", n=n_frames)
        return media_items

    @torch.no_grad()
    def __call__(
        self,
        height: int,
        width: int,
        num_frames: int,
        frame_rate: float,
        prompt: Union[str, List[str]] = None,
        negative_prompt: str = "",
        num_inference_steps: int = 20,
        skip_initial_inference_steps: int = 0,
        skip_final_inference_steps: int = 0,
        timesteps: List[int] = None,
        guidance_scale: Union[float, List[float]] = 4.5,
        cfg_star_rescale: bool = False,
        skip_layer_strategy: Optional[SkipLayerStrategy] = None,
        skip_block_list: Optional[Union[List[List[int]], List[int]]] = None,
        stg_scale: Union[float, List[float]] = 1.0,
        rescaling_scale: Union[float, List[float]] = 0.7,
        guidance_timesteps: Optional[List[int]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        prompt_attention_mask: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        conditioning_items: Optional[List[ConditioningItem]] = None,
        decode_timestep: Union[List[float], float] = 0.0,
        decode_noise_scale: Optional[List[float]] = None,
        mixed_precision: bool = False,
        offload_to_cpu: bool = False,
        enhance_prompt: bool = False,
        text_encoder_max_tokens: int = 256,
        stochastic_sampling: bool = False,
        media_items: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[ImagePipelineOutput, Tuple]:
        """
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            num_inference_steps (`int`, *optional*, defaults to 100):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference. If `timesteps` is provided, this parameter is ignored.
            skip_initial_inference_steps (`int`, *optional*, defaults to 0):
                The number of initial timesteps to skip. After calculating the timesteps, this number of timesteps will
                be removed from the beginning of the timesteps list. Meaning the highest-timesteps values will not run.
            skip_final_inference_steps (`int`, *optional*, defaults to 0):
                The number of final timesteps to skip. After calculating the timesteps, this number of timesteps will
                be removed from the end of the timesteps list. Meaning the lowest-timesteps values will not run.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
                timesteps are used. Must be in descending order.
            guidance_scale (`float`, *optional*, defaults to 4.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            cfg_star_rescale (`bool`, *optional*, defaults to `False`):
                If set to `True`, applies the CFG star rescale. Scales the negative prediction according to dot
                product between positive and negative.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            height (`int`, *optional*, defaults to self.unet.config.sample_size):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size):
                The width in pixels of the generated image.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. This negative prompt should be "". If not
                provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
            negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
                Pre-generated attention mask for negative text embeddings.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            use_resolution_binning (`bool` defaults to `True`):
                If set to `True`, the requested height and width are first mapped to the closest resolutions using
                `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
                the requested resolution. Useful for generating non-square images.
            enhance_prompt (`bool`, *optional*, defaults to `False`):
                If set to `True`, the prompt is enhanced using a LLM model.
            text_encoder_max_tokens (`int`, *optional*, defaults to `256`):
                The maximum number of tokens to use for the text encoder.
            stochastic_sampling (`bool`, *optional*, defaults to `False`):
                If set to `True`, the sampling is stochastic. If set to `False`, the sampling is deterministic.
            media_items ('torch.Tensor', *optional*):
                The input media item used for image-to-image / video-to-video.
        Examples:

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images
        """
        if "mask_feature" in kwargs:
            deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
            deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)

        is_video = kwargs.get("is_video", False)
        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        )

        # 2. Default height and width to transformer
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        self.video_scale_factor = self.video_scale_factor if is_video else 1
        vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", True)
        image_cond_noise_scale = kwargs.get("image_cond_noise_scale", 0.0)

        latent_height = height // self.vae_scale_factor
        latent_width = width // self.vae_scale_factor
        latent_num_frames = num_frames // self.video_scale_factor
        if isinstance(self.vae, CausalVideoAutoencoder) and is_video:
            latent_num_frames += 1
        latent_shape = (
            batch_size * num_images_per_prompt,
            self.transformer.config.in_channels,
            latent_num_frames,
            latent_height,
            latent_width,
        )

        # Prepare the list of denoising time-steps

        retrieve_timesteps_kwargs = {}
        if isinstance(self.scheduler, TimestepShifter):
            retrieve_timesteps_kwargs["samples_shape"] = latent_shape

        assert (
            skip_initial_inference_steps == 0
            or latents is not None
            or media_items is not None
        ), (
            f"skip_initial_inference_steps ({skip_initial_inference_steps}) is used for image-to-image/video-to-video - "
            "media_item or latents should be provided."
        )

        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            skip_initial_inference_steps=skip_initial_inference_steps,
            skip_final_inference_steps=skip_final_inference_steps,
            **retrieve_timesteps_kwargs,
        )

        if self.allowed_inference_steps is not None:
            for timestep in [round(x, 4) for x in timesteps.tolist()]:
                assert (
                    timestep in self.allowed_inference_steps
                ), f"Invalid inference timestep {timestep}. Allowed timesteps are {self.allowed_inference_steps}."

        if guidance_timesteps:
            guidance_mapping = []
            for timestep in timesteps:
                indices = [
                    i for i, val in enumerate(guidance_timesteps) if val <= timestep
                ]
                # assert len(indices) > 0, f"No guidance timestep found for {timestep}"
                guidance_mapping.append(
                    indices[0] if len(indices) > 0 else (len(guidance_timesteps) - 1)
                )

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        if not isinstance(guidance_scale, List):
            guidance_scale = [guidance_scale] * len(timesteps)
        else:
            guidance_scale = [
                guidance_scale[guidance_mapping[i]] for i in range(len(timesteps))
            ]

        # For simplicity, we are using a constant num_conds for all timesteps, so we need to zero
        # out cases where the guidance scale should not be applied.
        guidance_scale = [x if x > 1.0 else 0.0 for x in guidance_scale]

        if not isinstance(stg_scale, List):
            stg_scale = [stg_scale] * len(timesteps)
        else:
            stg_scale = [stg_scale[guidance_mapping[i]] for i in range(len(timesteps))]

        if not isinstance(rescaling_scale, List):
            rescaling_scale = [rescaling_scale] * len(timesteps)
        else:
            rescaling_scale = [
                rescaling_scale[guidance_mapping[i]] for i in range(len(timesteps))
            ]

        do_classifier_free_guidance = any(x > 1.0 for x in guidance_scale)
        do_spatio_temporal_guidance = any(x > 0.0 for x in stg_scale)
        do_rescaling = any(x != 1.0 for x in rescaling_scale)

        num_conds = 1
        if do_classifier_free_guidance:
            num_conds += 1
        if do_spatio_temporal_guidance:
            num_conds += 1

        # Normalize skip_block_list to always be None or a list of lists matching timesteps
        if skip_block_list is not None:
            # Convert single list to list of lists if needed
            if len(skip_block_list) == 0 or not isinstance(skip_block_list[0], list):
                skip_block_list = [skip_block_list] * len(timesteps)
            else:
                new_skip_block_list = []
                for i, timestep in enumerate(timesteps):
                    new_skip_block_list.append(skip_block_list[guidance_mapping[i]])
                skip_block_list = new_skip_block_list

        # Prepare skip layer masks
        skip_layer_masks: Optional[List[torch.Tensor]] = None
        if do_spatio_temporal_guidance:
            if skip_block_list is not None:
                skip_layer_masks = [
                    self.transformer.create_skip_layer_mask(
                        batch_size, num_conds, num_conds - 1, skip_blocks
                    )
                    for skip_blocks in skip_block_list
                ]

        if enhance_prompt:
            self.prompt_enhancer_image_caption_model = (
                self.prompt_enhancer_image_caption_model.to(self._execution_device)
            )
            self.prompt_enhancer_llm_model = self.prompt_enhancer_llm_model.to(
                self._execution_device
            )

            prompt = generate_cinematic_prompt(
                self.prompt_enhancer_image_caption_model,
                self.prompt_enhancer_image_caption_processor,
                self.prompt_enhancer_llm_model,
                self.prompt_enhancer_llm_tokenizer,
                prompt,
                conditioning_items,
                max_new_tokens=text_encoder_max_tokens,
            )

        # 3. Encode input prompt
        if self.text_encoder is not None:
            self.text_encoder = self.text_encoder.to(self._execution_device)

        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt,
            do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            text_encoder_max_tokens=text_encoder_max_tokens,
        )

        if offload_to_cpu and self.text_encoder is not None:
            self.text_encoder = self.text_encoder.cpu()

        self.transformer = self.transformer.to(self._execution_device)

        prompt_embeds_batch = prompt_embeds
        prompt_attention_mask_batch = prompt_attention_mask
        if do_classifier_free_guidance:
            prompt_embeds_batch = torch.cat(
                [negative_prompt_embeds, prompt_embeds], dim=0
            )
            prompt_attention_mask_batch = torch.cat(
                [negative_prompt_attention_mask, prompt_attention_mask], dim=0
            )
        if do_spatio_temporal_guidance:
            prompt_embeds_batch = torch.cat([prompt_embeds_batch, prompt_embeds], dim=0)
            prompt_attention_mask_batch = torch.cat(
                [
                    prompt_attention_mask_batch,
                    prompt_attention_mask,
                ],
                dim=0,
            )

        # 4. Prepare the initial latents using the provided media and conditioning items

        # Prepare the initial latents tensor, shape = (b, c, f, h, w)
        latents = self.prepare_latents(
            latents=latents,
            media_items=media_items,
            timestep=timesteps[0],
            latent_shape=latent_shape,
            dtype=prompt_embeds_batch.dtype,
            device=device,
            generator=generator,
            vae_per_channel_normalize=vae_per_channel_normalize,
        )

        # Update the latents with the conditioning items and patchify them into (b, n, c)
        latents, pixel_coords, conditioning_mask, num_cond_latents = (
            self.prepare_conditioning(
                conditioning_items=conditioning_items,
                init_latents=latents,
                num_frames=num_frames,
                height=height,
                width=width,
                vae_per_channel_normalize=vae_per_channel_normalize,
                generator=generator,
            )
        )
        init_latents = latents.clone()  # Used for image_cond_noise_update

        pixel_coords = torch.cat([pixel_coords] * num_conds)
        orig_conditioning_mask = conditioning_mask
        if conditioning_mask is not None and is_video:
            assert num_images_per_prompt == 1
            conditioning_mask = torch.cat([conditioning_mask] * num_conds)
        fractional_coords = pixel_coords.to(torch.float32)
        fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = max(
            len(timesteps) - num_inference_steps * self.scheduler.order, 0
        )

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if conditioning_mask is not None and image_cond_noise_scale > 0.0:
                    latents = self.add_noise_to_image_conditioning_latents(
                        t,
                        init_latents,
                        latents,
                        image_cond_noise_scale,
                        orig_conditioning_mask,
                        generator,
                    )

                latent_model_input = (
                    torch.cat([latents] * num_conds) if num_conds > 1 else latents
                )
                latent_model_input = self.scheduler.scale_model_input(
                    latent_model_input, t
                )

                current_timestep = t
                if not torch.is_tensor(current_timestep):
                    # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
                    # This would be a good case for the `match` statement (Python 3.10+)
                    is_mps = latent_model_input.device.type == "mps"
                    if isinstance(current_timestep, float):
                        dtype = torch.float32 if is_mps else torch.float64
                    else:
                        dtype = torch.int32 if is_mps else torch.int64
                    current_timestep = torch.tensor(
                        [current_timestep],
                        dtype=dtype,
                        device=latent_model_input.device,
                    )
                elif len(current_timestep.shape) == 0:
                    current_timestep = current_timestep[None].to(
                        latent_model_input.device
                    )
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                current_timestep = current_timestep.expand(
                    latent_model_input.shape[0]
                ).unsqueeze(-1)

                if conditioning_mask is not None:
                    # Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
                    # and will start to be denoised when the current timestep is lower than their conditioning timestep.
                    current_timestep = torch.min(
                        current_timestep, 1.0 - conditioning_mask
                    )

                # Choose the appropriate context manager based on `mixed_precision`
                if mixed_precision:
                    context_manager = torch.autocast(device.type, dtype=torch.bfloat16)
                else:
                    context_manager = nullcontext()  # Dummy context manager

                # predict noise model_output
                with context_manager:
                    noise_pred = self.transformer(
                        latent_model_input.to(self.transformer.dtype),
                        indices_grid=fractional_coords,
                        encoder_hidden_states=prompt_embeds_batch.to(
                            self.transformer.dtype
                        ),
                        encoder_attention_mask=prompt_attention_mask_batch,
                        timestep=current_timestep,
                        skip_layer_mask=(
                            skip_layer_masks[i]
                            if skip_layer_masks is not None
                            else None
                        ),
                        skip_layer_strategy=skip_layer_strategy,
                        return_dict=False,
                    )[0]

                # perform guidance
                if do_spatio_temporal_guidance:
                    noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(
                        num_conds
                    )[-2:]
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_conds)[:2]

                    if cfg_star_rescale:
                        # Rescales the unconditional noise prediction using the projection of the conditional prediction onto it:
                        # α = (⟨ε_text, ε_uncond⟩ / ||ε_uncond||²), then ε_uncond ← α * ε_uncond
                        # where ε_text is the conditional noise prediction and ε_uncond is the unconditional one.
                        positive_flat = noise_pred_text.view(batch_size, -1)
                        negative_flat = noise_pred_uncond.view(batch_size, -1)
                        dot_product = torch.sum(
                            positive_flat * negative_flat, dim=1, keepdim=True
                        )
                        squared_norm = (
                            torch.sum(negative_flat**2, dim=1, keepdim=True) + 1e-8
                        )
                        alpha = dot_product / squared_norm
                        noise_pred_uncond = alpha * noise_pred_uncond

                    noise_pred = noise_pred_uncond + guidance_scale[i] * (
                        noise_pred_text - noise_pred_uncond
                    )
                elif do_spatio_temporal_guidance:
                    noise_pred = noise_pred_text
                if do_spatio_temporal_guidance:
                    noise_pred = noise_pred + stg_scale[i] * (
                        noise_pred_text - noise_pred_text_perturb
                    )
                    if do_rescaling and stg_scale[i] > 0.0:
                        noise_pred_text_std = noise_pred_text.view(batch_size, -1).std(
                            dim=1, keepdim=True
                        )
                        noise_pred_std = noise_pred.view(batch_size, -1).std(
                            dim=1, keepdim=True
                        )

                        factor = noise_pred_text_std / noise_pred_std
                        factor = rescaling_scale[i] * factor + (1 - rescaling_scale[i])

                        noise_pred = noise_pred * factor.view(batch_size, 1, 1)

                current_timestep = current_timestep[:1]
                # learned sigma
                if (
                    self.transformer.config.out_channels // 2
                    == self.transformer.config.in_channels
                ):
                    noise_pred = noise_pred.chunk(2, dim=1)[0]

                # compute previous image: x_t -> x_t-1
                latents = self.denoising_step(
                    latents,
                    noise_pred,
                    current_timestep,
                    orig_conditioning_mask,
                    t,
                    extra_step_kwargs,
                    stochastic_sampling=stochastic_sampling,
                )

                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()

                if callback_on_step_end is not None:
                    callback_on_step_end(self, i, t, {})

        if offload_to_cpu:
            self.transformer = self.transformer.cpu()
            if self._execution_device == "cuda":
                torch.cuda.empty_cache()

        # Remove the added conditioning latents
        latents = latents[:, num_cond_latents:]

        latents = self.patchifier.unpatchify(
            latents=latents,
            output_height=latent_height,
            output_width=latent_width,
            out_channels=self.transformer.in_channels
            // math.prod(self.patchifier.patch_size),
        )
        if output_type != "latent":
            if self.vae.decoder.timestep_conditioning:
                noise = torch.randn_like(latents)
                if not isinstance(decode_timestep, list):
                    decode_timestep = [decode_timestep] * latents.shape[0]
                if decode_noise_scale is None:
                    decode_noise_scale = decode_timestep
                elif not isinstance(decode_noise_scale, list):
                    decode_noise_scale = [decode_noise_scale] * latents.shape[0]

                decode_timestep = torch.tensor(decode_timestep).to(latents.device)
                decode_noise_scale = torch.tensor(decode_noise_scale).to(
                    latents.device
                )[:, None, None, None, None]
                latents = (
                    latents * (1 - decode_noise_scale) + noise * decode_noise_scale
                )
            else:
                decode_timestep = None
            image = vae_decode(
                latents,
                self.vae,
                is_video,
                vae_per_channel_normalize=kwargs["vae_per_channel_normalize"],
                timestep=decode_timestep,
            )

            image = self.image_processor.postprocess(image, output_type=output_type)

        else:
            image = latents

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)

    def denoising_step(
        self,
        latents: torch.Tensor,
        noise_pred: torch.Tensor,
        current_timestep: torch.Tensor,
        conditioning_mask: torch.Tensor,
        t: float,
        extra_step_kwargs,
        t_eps=1e-6,
        stochastic_sampling=False,
    ):
        """
        Perform the denoising step for the required tokens, based on the current timestep and
        conditioning mask:
        Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
        and will start to be denoised when the current timestep is equal or lower than their
        conditioning timestep.
        (hard-conditioning latents with conditioning_mask = 1.0 are never denoised)
        """
        # Denoise the latents using the scheduler
        denoised_latents = self.scheduler.step(
            noise_pred,
            t if current_timestep is None else current_timestep,
            latents,
            **extra_step_kwargs,
            return_dict=False,
            stochastic_sampling=stochastic_sampling,
        )[0]

        if conditioning_mask is None:
            return denoised_latents

        tokens_to_denoise_mask = (t - t_eps < (1.0 - conditioning_mask)).unsqueeze(-1)
        return torch.where(tokens_to_denoise_mask, denoised_latents, latents)

    def prepare_conditioning(
        self,
        conditioning_items: Optional[List[ConditioningItem]],
        init_latents: torch.Tensor,
        num_frames: int,
        height: int,
        width: int,
        vae_per_channel_normalize: bool = False,
        generator=None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
        """
        Prepare conditioning tokens based on the provided conditioning items.

        This method encodes provided conditioning items (video frames or single frames) into latents
        and integrates them with the initial latent tensor. It also calculates corresponding pixel
        coordinates, a mask indicating the influence of conditioning latents, and the total number of
        conditioning latents.

        Args:
            conditioning_items (Optional[List[ConditioningItem]]): A list of ConditioningItem objects.
            init_latents (torch.Tensor): The initial latent tensor of shape (b, c, f_l, h_l, w_l), where
                `f_l` is the number of latent frames, and `h_l` and `w_l` are latent spatial dimensions.
            num_frames, height, width: The dimensions of the generated video.
            vae_per_channel_normalize (bool, optional): Whether to normalize channels during VAE encoding.
                Defaults to `False`.
            generator: The random generator

        Returns:
            Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
                - `init_latents` (torch.Tensor): The updated latent tensor including conditioning latents,
                  patchified into (b, n, c) shape.
                - `init_pixel_coords` (torch.Tensor): The pixel coordinates corresponding to the updated
                  latent tensor.
                - `conditioning_mask` (torch.Tensor): A mask indicating the conditioning-strength of each
                  latent token.
                - `num_cond_latents` (int): The total number of latent tokens added from conditioning items.

        Raises:
            AssertionError: If input shapes, dimensions, or conditions for applying conditioning are invalid.
        """
        assert isinstance(self.vae, CausalVideoAutoencoder)

        if conditioning_items:
            batch_size, _, num_latent_frames = init_latents.shape[:3]

            init_conditioning_mask = torch.zeros(
                init_latents[:, 0, :, :, :].shape,
                dtype=torch.float32,
                device=init_latents.device,
            )

            extra_conditioning_latents = []
            extra_conditioning_pixel_coords = []
            extra_conditioning_mask = []
            extra_conditioning_num_latents = 0  # Number of extra conditioning latents added (should be removed before decoding)

            # Process each conditioning item
            for conditioning_item in conditioning_items:
                conditioning_item = self._resize_conditioning_item(
                    conditioning_item, height, width
                )
                media_item = conditioning_item.media_item
                media_frame_number = conditioning_item.media_frame_number
                strength = conditioning_item.conditioning_strength
                assert media_item.ndim == 5  # (b, c, f, h, w)
                b, c, n_frames, h, w = media_item.shape
                assert (
                    height == h and width == w
                ) or media_frame_number == 0, f"Dimensions do not match: {height}x{width} != {h}x{w} - allowed only when media_frame_number == 0"
                assert n_frames % 8 == 1
                assert (
                    media_frame_number >= 0
                    and media_frame_number + n_frames <= num_frames
                )

                # Encode the provided conditioning media item
                media_item_latents = vae_encode(
                    media_item.to(dtype=self.vae.dtype, device=self.vae.device),
                    self.vae,
                    vae_per_channel_normalize=vae_per_channel_normalize,
                ).to(dtype=init_latents.dtype)

                # Handle the different conditioning cases
                if media_frame_number == 0:
                    # Get the target spatial position of the latent conditioning item
                    media_item_latents, l_x, l_y = self._get_latent_spatial_position(
                        media_item_latents,
                        conditioning_item,
                        height,
                        width,
                        strip_latent_border=True,
                    )
                    b, c_l, f_l, h_l, w_l = media_item_latents.shape

                    # First frame or sequence - just update the initial noise latents and the mask
                    init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l] = (
                        torch.lerp(
                            init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l],
                            media_item_latents,
                            strength,
                        )
                    )
                    init_conditioning_mask[
                        :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l
                    ] = strength
                else:
                    # Non-first frame or sequence
                    if n_frames > 1:
                        # Handle non-first sequence.
                        # Encoded latents are either fully consumed, or the prefix is handled separately below.
                        (
                            init_latents,
                            init_conditioning_mask,
                            media_item_latents,
                        ) = self._handle_non_first_conditioning_sequence(
                            init_latents,
                            init_conditioning_mask,
                            media_item_latents,
                            media_frame_number,
                            strength,
                        )

                    # Single frame or sequence-prefix latents
                    if media_item_latents is not None:
                        noise = randn_tensor(
                            media_item_latents.shape,
                            generator=generator,
                            device=media_item_latents.device,
                            dtype=media_item_latents.dtype,
                        )

                        media_item_latents = torch.lerp(
                            noise, media_item_latents, strength
                        )

                        # Patchify the extra conditioning latents and calculate their pixel coordinates
                        media_item_latents, latent_coords = self.patchifier.patchify(
                            latents=media_item_latents
                        )
                        pixel_coords = latent_to_pixel_coords(
                            latent_coords,
                            self.vae,
                            causal_fix=self.transformer.config.causal_temporal_positioning,
                        )

                        # Update the frame numbers to match the target frame number
                        pixel_coords[:, 0] += media_frame_number
                        extra_conditioning_num_latents += media_item_latents.shape[1]

                        conditioning_mask = torch.full(
                            media_item_latents.shape[:2],
                            strength,
                            dtype=torch.float32,
                            device=init_latents.device,
                        )

                        extra_conditioning_latents.append(media_item_latents)
                        extra_conditioning_pixel_coords.append(pixel_coords)
                        extra_conditioning_mask.append(conditioning_mask)

        # Patchify the updated latents and calculate their pixel coordinates
        init_latents, init_latent_coords = self.patchifier.patchify(
            latents=init_latents
        )
        init_pixel_coords = latent_to_pixel_coords(
            init_latent_coords,
            self.vae,
            causal_fix=self.transformer.config.causal_temporal_positioning,
        )

        if not conditioning_items:
            return init_latents, init_pixel_coords, None, 0

        init_conditioning_mask, _ = self.patchifier.patchify(
            latents=init_conditioning_mask.unsqueeze(1)
        )
        init_conditioning_mask = init_conditioning_mask.squeeze(-1)

        if extra_conditioning_latents:
            # Stack the extra conditioning latents, pixel coordinates and mask
            init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
            init_pixel_coords = torch.cat(
                [*extra_conditioning_pixel_coords, init_pixel_coords], dim=2
            )
            init_conditioning_mask = torch.cat(
                [*extra_conditioning_mask, init_conditioning_mask], dim=1
            )

            if self.transformer.use_tpu_flash_attention:
                # When flash attention is used, keep the original number of tokens by removing
                #   tokens from the end.
                init_latents = init_latents[:, :-extra_conditioning_num_latents]
                init_pixel_coords = init_pixel_coords[
                    :, :, :-extra_conditioning_num_latents
                ]
                init_conditioning_mask = init_conditioning_mask[
                    :, :-extra_conditioning_num_latents
                ]

        return (
            init_latents,
            init_pixel_coords,
            init_conditioning_mask,
            extra_conditioning_num_latents,
        )

    @staticmethod
    def _resize_conditioning_item(
        conditioning_item: ConditioningItem,
        height: int,
        width: int,
    ):
        if conditioning_item.media_x or conditioning_item.media_y:
            raise ValueError(
                "Provide media_item in the target size for spatial conditioning."
            )
        new_conditioning_item = copy.copy(conditioning_item)
        new_conditioning_item.media_item = LTXVideoPipeline.resize_tensor(
            conditioning_item.media_item, height, width
        )
        return new_conditioning_item

    def _get_latent_spatial_position(
        self,
        latents: torch.Tensor,
        conditioning_item: ConditioningItem,
        height: int,
        width: int,
        strip_latent_border,
    ):
        """
        Get the spatial position of the conditioning item in the latent space.
        If requested, strip the conditioning latent borders that do not align with target borders.
        (border latents look different then other latents and might confuse the model)
        """
        scale = self.vae_scale_factor
        h, w = conditioning_item.media_item.shape[-2:]
        assert (
            h <= height and w <= width
        ), f"Conditioning item size {h}x{w} is larger than target size {height}x{width}"
        assert h % scale == 0 and w % scale == 0

        # Compute the start and end spatial positions of the media item
        x_start, y_start = conditioning_item.media_x, conditioning_item.media_y
        x_start = (width - w) // 2 if x_start is None else x_start
        y_start = (height - h) // 2 if y_start is None else y_start
        x_end, y_end = x_start + w, y_start + h
        assert (
            x_end <= width and y_end <= height
        ), f"Conditioning item {x_start}:{x_end}x{y_start}:{y_end} is out of bounds for target size {width}x{height}"

        if strip_latent_border:
            # Strip one latent from left/right and/or top/bottom, update x, y accordingly
            if x_start > 0:
                x_start += scale
                latents = latents[:, :, :, :, 1:]

            if y_start > 0:
                y_start += scale
                latents = latents[:, :, :, 1:, :]

            if x_end < width:
                latents = latents[:, :, :, :, :-1]

            if y_end < height:
                latents = latents[:, :, :, :-1, :]

        return latents, x_start // scale, y_start // scale

    @staticmethod
    def _handle_non_first_conditioning_sequence(
        init_latents: torch.Tensor,
        init_conditioning_mask: torch.Tensor,
        latents: torch.Tensor,
        media_frame_number: int,
        strength: float,
        num_prefix_latent_frames: int = 2,
        prefix_latents_mode: str = "concat",
        prefix_soft_conditioning_strength: float = 0.15,
    ):
        """
        Special handling for a conditioning sequence that does not start on the first frame.
        The special handling is required to allow a short encoded video to be used as middle
        (or last) sequence in a longer video.
        Args:
            init_latents (torch.Tensor): The initial noise latents to be updated.
            init_conditioning_mask (torch.Tensor): The initial conditioning mask to be updated.
            latents (torch.Tensor): The encoded conditioning item.
            media_frame_number (int): The target frame number of the first frame in the conditioning sequence.
            strength (float): The conditioning strength for the conditioning latents.
            num_prefix_latent_frames (int, optional): The length of the sequence prefix, to be handled
                separately. Defaults to 2.
            prefix_latents_mode (str, optional): Special treatment for prefix (boundary) latents.
                - "drop": Drop the prefix latents.
                - "soft": Use the prefix latents, but with soft-conditioning
                - "concat": Add the prefix latents as extra tokens (like single frames)
            prefix_soft_conditioning_strength (float, optional): The strength of the soft-conditioning for
                the prefix latents, relevant if `prefix_latents_mode` is "soft". Defaults to 0.1.

        """
        f_l = latents.shape[2]
        f_l_p = num_prefix_latent_frames
        assert f_l >= f_l_p
        assert media_frame_number % 8 == 0
        if f_l > f_l_p:
            # Insert the conditioning latents **excluding the prefix** into the sequence
            f_l_start = media_frame_number // 8 + f_l_p
            f_l_end = f_l_start + f_l - f_l_p
            init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
                init_latents[:, :, f_l_start:f_l_end],
                latents[:, :, f_l_p:],
                strength,
            )
            # Mark these latent frames as conditioning latents
            init_conditioning_mask[:, f_l_start:f_l_end] = strength

        # Handle the prefix-latents
        if prefix_latents_mode == "soft":
            if f_l_p > 1:
                # Drop the first (single-frame) latent and soft-condition the remaining prefix
                f_l_start = media_frame_number // 8 + 1
                f_l_end = f_l_start + f_l_p - 1
                strength = min(prefix_soft_conditioning_strength, strength)
                init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
                    init_latents[:, :, f_l_start:f_l_end],
                    latents[:, :, 1:f_l_p],
                    strength,
                )
                # Mark these latent frames as conditioning latents
                init_conditioning_mask[:, f_l_start:f_l_end] = strength
            latents = None  # No more latents to handle
        elif prefix_latents_mode == "drop":
            # Drop the prefix latents
            latents = None
        elif prefix_latents_mode == "concat":
            # Pass-on the prefix latents to be handled as extra conditioning frames
            latents = latents[:, :, :f_l_p]
        else:
            raise ValueError(f"Invalid prefix_latents_mode: {prefix_latents_mode}")
        return (
            init_latents,
            init_conditioning_mask,
            latents,
        )

    def trim_conditioning_sequence(
        self, start_frame: int, sequence_num_frames: int, target_num_frames: int
    ):
        """
        Trim a conditioning sequence to the allowed number of frames.

        Args:
            start_frame (int): The target frame number of the first frame in the sequence.
            sequence_num_frames (int): The number of frames in the sequence.
            target_num_frames (int): The target number of frames in the generated video.

        Returns:
            int: updated sequence length
        """
        scale_factor = self.video_scale_factor
        num_frames = min(sequence_num_frames, target_num_frames - start_frame)
        # Trim down to a multiple of temporal_scale_factor frames plus 1
        num_frames = (num_frames - 1) // scale_factor * scale_factor + 1
        return num_frames


def adain_filter_latent(
    latents: torch.Tensor, reference_latents: torch.Tensor, factor=1.0
):
    """
    Applies Adaptive Instance Normalization (AdaIN) to a latent tensor based on
    statistics from a reference latent tensor.

    Args:
        latent (torch.Tensor): Input latents to normalize
        reference_latent (torch.Tensor): The reference latents providing style statistics.
        factor (float): Blending factor between original and transformed latent.
                       Range: -10.0 to 10.0, Default: 1.0

    Returns:
        torch.Tensor: The transformed latent tensor
    """
    result = latents.clone()

    for i in range(latents.size(0)):
        for c in range(latents.size(1)):
            r_sd, r_mean = torch.std_mean(
                reference_latents[i, c], dim=None
            )  # index by original dim order
            i_sd, i_mean = torch.std_mean(result[i, c], dim=None)

            result[i, c] = ((result[i, c] - i_mean) / i_sd) * r_sd + r_mean

    result = torch.lerp(latents, result, factor)
    return result


class LTXMultiScalePipeline:
    def _upsample_latents(
        self, latest_upsampler: LatentUpsampler, latents: torch.Tensor
    ):
        assert latents.device == latest_upsampler.device

        latents = un_normalize_latents(
            latents, self.vae, vae_per_channel_normalize=True
        )
        upsampled_latents = latest_upsampler(latents)
        upsampled_latents = normalize_latents(
            upsampled_latents, self.vae, vae_per_channel_normalize=True
        )
        return upsampled_latents

    def __init__(
        self, video_pipeline: LTXVideoPipeline, latent_upsampler: LatentUpsampler
    ):
        self.video_pipeline = video_pipeline
        self.vae = video_pipeline.vae
        self.latent_upsampler = latent_upsampler

    def __call__(
        self,
        downscale_factor: float,
        first_pass: dict,
        second_pass: dict,
        *args: Any,
        **kwargs: Any,
    ) -> Any:
        original_kwargs = kwargs.copy()
        original_output_type = kwargs["output_type"]
        original_width = kwargs["width"]
        original_height = kwargs["height"]

        x_width = int(kwargs["width"] * downscale_factor)
        downscaled_width = x_width - (x_width % self.video_pipeline.vae_scale_factor)
        x_height = int(kwargs["height"] * downscale_factor)
        downscaled_height = x_height - (x_height % self.video_pipeline.vae_scale_factor)

        kwargs["output_type"] = "latent"
        kwargs["width"] = downscaled_width
        kwargs["height"] = downscaled_height
        kwargs.update(**first_pass)
        result = self.video_pipeline(*args, **kwargs)
        latents = result.images

        upsampled_latents = self._upsample_latents(self.latent_upsampler, latents)
        upsampled_latents = adain_filter_latent(
            latents=upsampled_latents, reference_latents=latents
        )

        kwargs = original_kwargs

        kwargs["latents"] = upsampled_latents
        kwargs["output_type"] = original_output_type
        kwargs["width"] = downscaled_width * 2
        kwargs["height"] = downscaled_height * 2
        kwargs.update(**second_pass)

        result = self.video_pipeline(*args, **kwargs)
        if original_output_type != "latent":
            num_frames = result.images.shape[2]
            videos = rearrange(result.images, "b c f h w -> (b f) c h w")

            videos = F.interpolate(
                videos,
                size=(original_height, original_width),
                mode="bilinear",
                align_corners=False,
            )
            videos = rearrange(videos, "(b f) c h w -> b c f h w", f=num_frames)
            result.images = videos

        return result