Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
from einops import rearrange | |
class PixelShuffleND(nn.Module): | |
def __init__(self, dims, upscale_factors=(2, 2, 2)): | |
super().__init__() | |
assert dims in [1, 2, 3], "dims must be 1, 2, or 3" | |
self.dims = dims | |
self.upscale_factors = upscale_factors | |
def forward(self, x): | |
if self.dims == 3: | |
return rearrange( | |
x, | |
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)", | |
p1=self.upscale_factors[0], | |
p2=self.upscale_factors[1], | |
p3=self.upscale_factors[2], | |
) | |
elif self.dims == 2: | |
return rearrange( | |
x, | |
"b (c p1 p2) h w -> b c (h p1) (w p2)", | |
p1=self.upscale_factors[0], | |
p2=self.upscale_factors[1], | |
) | |
elif self.dims == 1: | |
return rearrange( | |
x, | |
"b (c p1) f h w -> b c (f p1) h w", | |
p1=self.upscale_factors[0], | |
) | |