Spaces:
Running
on
Zero
Running
on
Zero
import av | |
import torch | |
import io | |
import numpy as np | |
def _encode_single_frame(output_file, image_array: np.ndarray, crf): | |
container = av.open(output_file, "w", format="mp4") | |
try: | |
stream = container.add_stream( | |
"libx264", rate=1, options={"crf": str(crf), "preset": "veryfast"} | |
) | |
stream.height = image_array.shape[0] | |
stream.width = image_array.shape[1] | |
av_frame = av.VideoFrame.from_ndarray(image_array, format="rgb24").reformat( | |
format="yuv420p" | |
) | |
container.mux(stream.encode(av_frame)) | |
container.mux(stream.encode()) | |
finally: | |
container.close() | |
def _decode_single_frame(video_file): | |
container = av.open(video_file) | |
try: | |
stream = next(s for s in container.streams if s.type == "video") | |
frame = next(container.decode(stream)) | |
finally: | |
container.close() | |
return frame.to_ndarray(format="rgb24") | |
def compress(image: torch.Tensor, crf=29): | |
if crf == 0: | |
return image | |
image_array = ( | |
(image[: (image.shape[0] // 2) * 2, : (image.shape[1] // 2) * 2] * 255.0) | |
.byte() | |
.cpu() | |
.numpy() | |
) | |
with io.BytesIO() as output_file: | |
_encode_single_frame(output_file, image_array, crf) | |
video_bytes = output_file.getvalue() | |
with io.BytesIO(video_bytes) as video_file: | |
image_array = _decode_single_frame(video_file) | |
tensor = torch.tensor(image_array, dtype=image.dtype, device=image.device) / 255.0 | |
return tensor | |