Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,6 @@ import tempfile
|
|
11 |
from PIL import Image
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
import shutil
|
14 |
-
import math # For math.round, though built-in round works for floats
|
15 |
|
16 |
from inference import (
|
17 |
create_ltx_video_pipeline,
|
@@ -89,13 +88,56 @@ if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
|
|
89 |
target_inference_device = "cuda"
|
90 |
print(f"Target inference device: {target_inference_device}")
|
91 |
pipeline_instance.to(target_inference_device)
|
92 |
-
if latent_upsampler_instance:
|
93 |
latent_upsampler_instance.to(target_inference_device)
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
@spaces.GPU
|
96 |
def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath,
|
97 |
height_ui, width_ui, mode,
|
98 |
-
ui_steps, duration_ui,
|
99 |
ui_frames_to_use,
|
100 |
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
|
101 |
progress=gr.Progress(track_tqdm=True)):
|
@@ -104,33 +146,25 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
104 |
seed_ui = random.randint(0, 2**32 - 1)
|
105 |
seed_everething(int(seed_ui))
|
106 |
|
107 |
-
# Convert duration_ui (seconds) to actual_num_frames (N*8+1 format)
|
108 |
target_frames_ideal = duration_ui * FPS
|
109 |
target_frames_rounded = round(target_frames_ideal)
|
110 |
-
if target_frames_rounded < 1:
|
111 |
target_frames_rounded = 1
|
112 |
|
113 |
-
# Calculate N for N*8+1, ensuring it's rounded to the nearest integer
|
114 |
-
# (target_frames_rounded - 1) could be float if target_frames_rounded is float
|
115 |
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
|
116 |
actual_num_frames = int(n_val * 8 + 1)
|
117 |
|
118 |
-
# Clamp to the allowed min (9) and max (MAX_NUM_FRAMES) N*8+1 values
|
119 |
actual_num_frames = max(9, actual_num_frames)
|
120 |
actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames)
|
121 |
|
122 |
actual_height = int(height_ui)
|
123 |
actual_width = int(width_ui)
|
124 |
-
# actual_num_frames is now calculated above
|
125 |
|
126 |
height_padded = ((actual_height - 1) // 32 + 1) * 32
|
127 |
width_padded = ((actual_width - 1) // 32 + 1) * 32
|
128 |
-
# This padding ensures the model gets a frame count that is N*8+1
|
129 |
-
# Since actual_num_frames is already N*8+1, this should preserve it.
|
130 |
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
|
131 |
if num_frames_padded != actual_num_frames:
|
132 |
print(f"Warning: actual_num_frames ({actual_num_frames}) and num_frames_padded ({num_frames_padded}) differ. Using num_frames_padded for pipeline.")
|
133 |
-
# This case should ideally not happen if actual_num_frames is correctly N*8+1 and >= 9.
|
134 |
|
135 |
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
|
136 |
|
@@ -139,7 +173,7 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
139 |
"negative_prompt": negative_prompt,
|
140 |
"height": height_padded,
|
141 |
"width": width_padded,
|
142 |
-
"num_frames": num_frames_padded,
|
143 |
"frame_rate": int(FPS),
|
144 |
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
|
145 |
"output_type": "pt",
|
@@ -184,7 +218,7 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
184 |
media_path=input_video_filepath,
|
185 |
height=actual_height,
|
186 |
width=actual_width,
|
187 |
-
max_frames=int(ui_frames_to_use),
|
188 |
padding=padding_values
|
189 |
).to(target_inference_device)
|
190 |
except Exception as e:
|
@@ -192,15 +226,10 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
192 |
raise gr.Error(f"Could not load video: {e}")
|
193 |
|
194 |
print(f"Moving models to {target_inference_device} for inference (if not already there)...")
|
195 |
-
# Models are moved globally once, no need to move per call unless strategy changes.
|
196 |
-
# pipeline_instance.to(target_inference_device)
|
197 |
-
# if latent_upsampler_instance:
|
198 |
-
# latent_upsampler_instance.to(target_inference_device)
|
199 |
|
200 |
active_latent_upsampler = None
|
201 |
if improve_texture_flag and latent_upsampler_instance:
|
202 |
active_latent_upsampler = latent_upsampler_instance
|
203 |
-
#print("Models moved.")
|
204 |
|
205 |
result_images_tensor = None
|
206 |
if improve_texture_flag:
|
@@ -230,7 +259,6 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
230 |
single_pass_call_kwargs = call_kwargs.copy()
|
231 |
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
|
232 |
single_pass_call_kwargs["num_inference_steps"] = int(ui_steps)
|
233 |
-
# These keys might not exist if improve_texture_flag is false from the start of call_kwargs
|
234 |
single_pass_call_kwargs.pop("first_pass", None)
|
235 |
single_pass_call_kwargs.pop("second_pass", None)
|
236 |
single_pass_call_kwargs.pop("downscale_factor", None)
|
@@ -245,7 +273,6 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
245 |
slice_h_end = -pad_bottom if pad_bottom > 0 else None
|
246 |
slice_w_end = -pad_right if pad_right > 0 else None
|
247 |
|
248 |
-
# Crop to actual_num_frames, which is the desired output length
|
249 |
result_images_tensor = result_images_tensor[
|
250 |
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
|
251 |
]
|
@@ -297,6 +324,7 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
297 |
|
298 |
return output_video_path
|
299 |
|
|
|
300 |
# --- Gradio UI Definition ---
|
301 |
css="""
|
302 |
#col-container {
|
@@ -308,6 +336,7 @@ css="""
|
|
308 |
with gr.Blocks(css=css) as demo:
|
309 |
gr.Markdown("# LTX Video 0.9.7 Distilled")
|
310 |
gr.Markdown("Fast high quality video generation. [Model](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-2b-0.9.6-distilled-04-25.safetensors) [GitHub](https://github.com/Lightricks/LTX-Video) [Diffusers](#)")
|
|
|
311 |
with gr.Row():
|
312 |
with gr.Column():
|
313 |
with gr.Tab("image-to-video") as image_tab:
|
@@ -322,7 +351,7 @@ with gr.Blocks(css=css) as demo:
|
|
322 |
t2v_button = gr.Button("Generate Text-to-Video", variant="primary")
|
323 |
with gr.Tab("video-to-video") as video_tab:
|
324 |
image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None)
|
325 |
-
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"])
|
326 |
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.")
|
327 |
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
|
328 |
v2v_button = gr.Button("Generate Video-to-Video", variant="primary")
|
@@ -347,26 +376,90 @@ with gr.Blocks(css=css) as demo:
|
|
347 |
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=False)
|
348 |
with gr.Row():
|
349 |
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.")
|
350 |
-
default_steps = len(PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps", [1]*7))
|
351 |
steps_input = gr.Slider(label="Inference Steps (for first pass if multi-scale)", minimum=1, maximum=30, value=default_steps, step=1, info="Number of denoising steps. More steps can improve quality but increase time. If YAML defines 'timesteps' for a pass, this UI value is ignored for that pass.")
|
352 |
with gr.Row():
|
353 |
-
height_input = gr.Slider(label="Height", value=512, step=32, minimum=
|
354 |
-
width_input = gr.Slider(label="Width", value=704, step=32, minimum=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
-
# ---
|
357 |
t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden,
|
358 |
height_input, width_input, gr.State("text-to-video"),
|
359 |
-
steps_input, duration_input, gr.State(0),
|
360 |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
361 |
|
362 |
i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden,
|
363 |
height_input, width_input, gr.State("image-to-video"),
|
364 |
-
steps_input, duration_input, gr.State(0),
|
365 |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
366 |
|
367 |
v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v,
|
368 |
height_input, width_input, gr.State("video-to-video"),
|
369 |
-
steps_input, duration_input, frames_to_use,
|
370 |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
371 |
|
372 |
t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video], api_name="text_to_video")
|
|
|
11 |
from PIL import Image
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
import shutil
|
|
|
14 |
|
15 |
from inference import (
|
16 |
create_ltx_video_pipeline,
|
|
|
88 |
target_inference_device = "cuda"
|
89 |
print(f"Target inference device: {target_inference_device}")
|
90 |
pipeline_instance.to(target_inference_device)
|
91 |
+
if latent_upsampler_instance:
|
92 |
latent_upsampler_instance.to(target_inference_device)
|
93 |
|
94 |
+
|
95 |
+
# --- Helper function for dimension calculation ---
|
96 |
+
MIN_DIM_SLIDER = 256 # As defined in the sliders minimum attribute
|
97 |
+
TARGET_FIXED_SIDE = 512 # Desired fixed side length as per requirement
|
98 |
+
|
99 |
+
def calculate_new_dimensions(orig_w, orig_h):
|
100 |
+
"""
|
101 |
+
Calculates new dimensions for height and width sliders based on original media dimensions.
|
102 |
+
Ensures one side is TARGET_FIXED_SIDE, the other is scaled proportionally,
|
103 |
+
both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE].
|
104 |
+
"""
|
105 |
+
if orig_w == 0 or orig_h == 0:
|
106 |
+
# Default to TARGET_FIXED_SIDE square if original dimensions are invalid
|
107 |
+
return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE)
|
108 |
+
|
109 |
+
if orig_w >= orig_h: # Landscape or square
|
110 |
+
new_h = TARGET_FIXED_SIDE
|
111 |
+
aspect_ratio = orig_w / orig_h
|
112 |
+
new_w_ideal = new_h * aspect_ratio
|
113 |
+
|
114 |
+
# Round to nearest multiple of 32
|
115 |
+
new_w = round(new_w_ideal / 32) * 32
|
116 |
+
|
117 |
+
# Clamp to [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]
|
118 |
+
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
|
119 |
+
# Ensure new_h is also clamped (TARGET_FIXED_SIDE should be within these bounds if configured correctly)
|
120 |
+
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
|
121 |
+
else: # Portrait
|
122 |
+
new_w = TARGET_FIXED_SIDE
|
123 |
+
aspect_ratio = orig_h / orig_w # Use H/W ratio for portrait scaling
|
124 |
+
new_h_ideal = new_w * aspect_ratio
|
125 |
+
|
126 |
+
# Round to nearest multiple of 32
|
127 |
+
new_h = round(new_h_ideal / 32) * 32
|
128 |
+
|
129 |
+
# Clamp to [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]
|
130 |
+
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
|
131 |
+
# Ensure new_w is also clamped
|
132 |
+
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
|
133 |
+
|
134 |
+
return int(new_h), int(new_w)
|
135 |
+
|
136 |
+
|
137 |
@spaces.GPU
|
138 |
def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath,
|
139 |
height_ui, width_ui, mode,
|
140 |
+
ui_steps, duration_ui,
|
141 |
ui_frames_to_use,
|
142 |
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
|
143 |
progress=gr.Progress(track_tqdm=True)):
|
|
|
146 |
seed_ui = random.randint(0, 2**32 - 1)
|
147 |
seed_everething(int(seed_ui))
|
148 |
|
|
|
149 |
target_frames_ideal = duration_ui * FPS
|
150 |
target_frames_rounded = round(target_frames_ideal)
|
151 |
+
if target_frames_rounded < 1:
|
152 |
target_frames_rounded = 1
|
153 |
|
|
|
|
|
154 |
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
|
155 |
actual_num_frames = int(n_val * 8 + 1)
|
156 |
|
|
|
157 |
actual_num_frames = max(9, actual_num_frames)
|
158 |
actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames)
|
159 |
|
160 |
actual_height = int(height_ui)
|
161 |
actual_width = int(width_ui)
|
|
|
162 |
|
163 |
height_padded = ((actual_height - 1) // 32 + 1) * 32
|
164 |
width_padded = ((actual_width - 1) // 32 + 1) * 32
|
|
|
|
|
165 |
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
|
166 |
if num_frames_padded != actual_num_frames:
|
167 |
print(f"Warning: actual_num_frames ({actual_num_frames}) and num_frames_padded ({num_frames_padded}) differ. Using num_frames_padded for pipeline.")
|
|
|
168 |
|
169 |
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
|
170 |
|
|
|
173 |
"negative_prompt": negative_prompt,
|
174 |
"height": height_padded,
|
175 |
"width": width_padded,
|
176 |
+
"num_frames": num_frames_padded,
|
177 |
"frame_rate": int(FPS),
|
178 |
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
|
179 |
"output_type": "pt",
|
|
|
218 |
media_path=input_video_filepath,
|
219 |
height=actual_height,
|
220 |
width=actual_width,
|
221 |
+
max_frames=int(ui_frames_to_use),
|
222 |
padding=padding_values
|
223 |
).to(target_inference_device)
|
224 |
except Exception as e:
|
|
|
226 |
raise gr.Error(f"Could not load video: {e}")
|
227 |
|
228 |
print(f"Moving models to {target_inference_device} for inference (if not already there)...")
|
|
|
|
|
|
|
|
|
229 |
|
230 |
active_latent_upsampler = None
|
231 |
if improve_texture_flag and latent_upsampler_instance:
|
232 |
active_latent_upsampler = latent_upsampler_instance
|
|
|
233 |
|
234 |
result_images_tensor = None
|
235 |
if improve_texture_flag:
|
|
|
259 |
single_pass_call_kwargs = call_kwargs.copy()
|
260 |
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
|
261 |
single_pass_call_kwargs["num_inference_steps"] = int(ui_steps)
|
|
|
262 |
single_pass_call_kwargs.pop("first_pass", None)
|
263 |
single_pass_call_kwargs.pop("second_pass", None)
|
264 |
single_pass_call_kwargs.pop("downscale_factor", None)
|
|
|
273 |
slice_h_end = -pad_bottom if pad_bottom > 0 else None
|
274 |
slice_w_end = -pad_right if pad_right > 0 else None
|
275 |
|
|
|
276 |
result_images_tensor = result_images_tensor[
|
277 |
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
|
278 |
]
|
|
|
324 |
|
325 |
return output_video_path
|
326 |
|
327 |
+
|
328 |
# --- Gradio UI Definition ---
|
329 |
css="""
|
330 |
#col-container {
|
|
|
336 |
with gr.Blocks(css=css) as demo:
|
337 |
gr.Markdown("# LTX Video 0.9.7 Distilled")
|
338 |
gr.Markdown("Fast high quality video generation. [Model](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-2b-0.9.6-distilled-04-25.safetensors) [GitHub](https://github.com/Lightricks/LTX-Video) [Diffusers](#)")
|
339 |
+
|
340 |
with gr.Row():
|
341 |
with gr.Column():
|
342 |
with gr.Tab("image-to-video") as image_tab:
|
|
|
351 |
t2v_button = gr.Button("Generate Text-to-Video", variant="primary")
|
352 |
with gr.Tab("video-to-video") as video_tab:
|
353 |
image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None)
|
354 |
+
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"]) # type defaults to filepath
|
355 |
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.")
|
356 |
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
|
357 |
v2v_button = gr.Button("Generate Video-to-Video", variant="primary")
|
|
|
376 |
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=False)
|
377 |
with gr.Row():
|
378 |
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.")
|
379 |
+
default_steps = len(PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps", [1]*7))
|
380 |
steps_input = gr.Slider(label="Inference Steps (for first pass if multi-scale)", minimum=1, maximum=30, value=default_steps, step=1, info="Number of denoising steps. More steps can improve quality but increase time. If YAML defines 'timesteps' for a pass, this UI value is ignored for that pass.")
|
381 |
with gr.Row():
|
382 |
+
height_input = gr.Slider(label="Height", value=512, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
|
383 |
+
width_input = gr.Slider(label="Width", value=704, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
|
384 |
+
|
385 |
+
|
386 |
+
# --- Event handlers for updating dimensions on upload ---
|
387 |
+
def handle_image_upload_for_dims(image_filepath, current_h, current_w):
|
388 |
+
if not image_filepath: # Image cleared or no image initially
|
389 |
+
# Keep current slider values if image is cleared or no input
|
390 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
391 |
+
try:
|
392 |
+
img = Image.open(image_filepath)
|
393 |
+
orig_w, orig_h = img.size
|
394 |
+
new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
|
395 |
+
return gr.update(value=new_h), gr.update(value=new_w)
|
396 |
+
except Exception as e:
|
397 |
+
print(f"Error processing image for dimension update: {e}")
|
398 |
+
# Keep current slider values on error
|
399 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
400 |
+
|
401 |
+
def handle_video_upload_for_dims(video_filepath, current_h, current_w):
|
402 |
+
if not video_filepath: # Video cleared or no video initially
|
403 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
404 |
+
try:
|
405 |
+
# Ensure video_filepath is a string for os.path.exists and imageio
|
406 |
+
video_filepath_str = str(video_filepath)
|
407 |
+
if not os.path.exists(video_filepath_str):
|
408 |
+
print(f"Video file path does not exist for dimension update: {video_filepath_str}")
|
409 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
410 |
+
|
411 |
+
orig_w, orig_h = -1, -1
|
412 |
+
with imageio.get_reader(video_filepath_str) as reader:
|
413 |
+
meta = reader.get_meta_data()
|
414 |
+
if 'size' in meta:
|
415 |
+
orig_w, orig_h = meta['size']
|
416 |
+
else:
|
417 |
+
# Fallback: read first frame if 'size' not in metadata
|
418 |
+
try:
|
419 |
+
first_frame = reader.get_data(0)
|
420 |
+
# Shape is (h, w, c) for frames
|
421 |
+
orig_h, orig_w = first_frame.shape[0], first_frame.shape[1]
|
422 |
+
except Exception as e_frame:
|
423 |
+
print(f"Could not get video size from metadata or first frame: {e_frame}")
|
424 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
425 |
+
|
426 |
+
if orig_w == -1 or orig_h == -1: # If dimensions couldn't be determined
|
427 |
+
print(f"Could not determine dimensions for video: {video_filepath_str}")
|
428 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
429 |
+
|
430 |
+
new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
|
431 |
+
return gr.update(value=new_h), gr.update(value=new_w)
|
432 |
+
except Exception as e:
|
433 |
+
# Log type of video_filepath for debugging if it's not a path-like string
|
434 |
+
print(f"Error processing video for dimension update: {e} (Path: {video_filepath}, Type: {type(video_filepath)})")
|
435 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
436 |
+
|
437 |
+
# Attach upload handlers
|
438 |
+
image_i2v.upload(
|
439 |
+
fn=handle_image_upload_for_dims,
|
440 |
+
inputs=[image_i2v, height_input, width_input],
|
441 |
+
outputs=[height_input, width_input]
|
442 |
+
)
|
443 |
+
video_v2v.upload(
|
444 |
+
fn=handle_video_upload_for_dims,
|
445 |
+
inputs=[video_v2v, height_input, width_input],
|
446 |
+
outputs=[height_input, width_input]
|
447 |
+
)
|
448 |
|
449 |
+
# --- INPUT LISTS (remain the same structurally) ---
|
450 |
t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden,
|
451 |
height_input, width_input, gr.State("text-to-video"),
|
452 |
+
steps_input, duration_input, gr.State(0),
|
453 |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
454 |
|
455 |
i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden,
|
456 |
height_input, width_input, gr.State("image-to-video"),
|
457 |
+
steps_input, duration_input, gr.State(0),
|
458 |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
459 |
|
460 |
v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v,
|
461 |
height_input, width_input, gr.State("video-to-video"),
|
462 |
+
steps_input, duration_input, frames_to_use,
|
463 |
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
|
464 |
|
465 |
t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video], api_name="text_to_video")
|