multimodalart HF Staff commited on
Commit
cbdec18
·
verified ·
1 Parent(s): b972f40

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -34
app.py CHANGED
@@ -206,40 +206,39 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
206
  #print("Models moved.")
207
 
208
  result_images_tensor = None
209
- try:
210
- if improve_texture_flag:
211
- if not active_latent_upsampler:
212
- raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
213
-
214
- multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
215
-
216
- first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
217
- first_pass_args["guidance_scale"] = float(ui_guidance_scale)
218
- if "timesteps" not in first_pass_args:
219
- first_pass_args["num_inference_steps"] = int(ui_steps)
220
-
221
- second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
222
- second_pass_args["guidance_scale"] = float(ui_guidance_scale)
223
-
224
- multi_scale_call_kwargs = call_kwargs.copy()
225
- multi_scale_call_kwargs.update({
226
- "downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
227
- "first_pass": first_pass_args,
228
- "second_pass": second_pass_args,
229
- })
230
-
231
- print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}) on {target_inference_device}")
232
- result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
233
- else:
234
- single_pass_call_kwargs = call_kwargs.copy()
235
- single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
236
- single_pass_call_kwargs["num_inference_steps"] = int(ui_steps)
237
- single_pass_call_kwargs.pop("first_pass", None)
238
- single_pass_call_kwargs.pop("second_pass", None)
239
- single_pass_call_kwargs.pop("downscale_factor", None)
240
-
241
- print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}) on {target_inference_device}")
242
- result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
243
 
244
  if result_images_tensor is None:
245
  raise gr.Error("Generation failed.")
 
206
  #print("Models moved.")
207
 
208
  result_images_tensor = None
209
+ if improve_texture_flag:
210
+ if not active_latent_upsampler:
211
+ raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
212
+
213
+ multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
214
+
215
+ first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
216
+ first_pass_args["guidance_scale"] = float(ui_guidance_scale)
217
+ if "timesteps" not in first_pass_args:
218
+ first_pass_args["num_inference_steps"] = int(ui_steps)
219
+
220
+ second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
221
+ second_pass_args["guidance_scale"] = float(ui_guidance_scale)
222
+
223
+ multi_scale_call_kwargs = call_kwargs.copy()
224
+ multi_scale_call_kwargs.update({
225
+ "downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
226
+ "first_pass": first_pass_args,
227
+ "second_pass": second_pass_args,
228
+ })
229
+
230
+ print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}) on {target_inference_device}")
231
+ result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
232
+ else:
233
+ single_pass_call_kwargs = call_kwargs.copy()
234
+ single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
235
+ single_pass_call_kwargs["num_inference_steps"] = int(ui_steps)
236
+ single_pass_call_kwargs.pop("first_pass", None)
237
+ single_pass_call_kwargs.pop("second_pass", None)
238
+ single_pass_call_kwargs.pop("downscale_factor", None)
239
+
240
+ print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}) on {target_inference_device}")
241
+ result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
 
242
 
243
  if result_images_tensor is None:
244
  raise gr.Error("Generation failed.")