Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -206,40 +206,39 @@ def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath
|
|
206 |
#print("Models moved.")
|
207 |
|
208 |
result_images_tensor = None
|
209 |
-
|
210 |
-
if
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
|
243 |
|
244 |
if result_images_tensor is None:
|
245 |
raise gr.Error("Generation failed.")
|
|
|
206 |
#print("Models moved.")
|
207 |
|
208 |
result_images_tensor = None
|
209 |
+
if improve_texture_flag:
|
210 |
+
if not active_latent_upsampler:
|
211 |
+
raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
|
212 |
+
|
213 |
+
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
|
214 |
+
|
215 |
+
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
|
216 |
+
first_pass_args["guidance_scale"] = float(ui_guidance_scale)
|
217 |
+
if "timesteps" not in first_pass_args:
|
218 |
+
first_pass_args["num_inference_steps"] = int(ui_steps)
|
219 |
+
|
220 |
+
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
|
221 |
+
second_pass_args["guidance_scale"] = float(ui_guidance_scale)
|
222 |
+
|
223 |
+
multi_scale_call_kwargs = call_kwargs.copy()
|
224 |
+
multi_scale_call_kwargs.update({
|
225 |
+
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
|
226 |
+
"first_pass": first_pass_args,
|
227 |
+
"second_pass": second_pass_args,
|
228 |
+
})
|
229 |
+
|
230 |
+
print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}) on {target_inference_device}")
|
231 |
+
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
|
232 |
+
else:
|
233 |
+
single_pass_call_kwargs = call_kwargs.copy()
|
234 |
+
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
|
235 |
+
single_pass_call_kwargs["num_inference_steps"] = int(ui_steps)
|
236 |
+
single_pass_call_kwargs.pop("first_pass", None)
|
237 |
+
single_pass_call_kwargs.pop("second_pass", None)
|
238 |
+
single_pass_call_kwargs.pop("downscale_factor", None)
|
239 |
+
|
240 |
+
print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}) on {target_inference_device}")
|
241 |
+
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
|
|
|
242 |
|
243 |
if result_images_tensor is None:
|
244 |
raise gr.Error("Generation failed.")
|