linoyts's picture
linoyts HF Staff
Update app.py (#3)
c1ef467 verified
raw
history blame
19.8 kB
import gradio as gr
import torch
import numpy as np
import tempfile
import os
import spaces
from diffusers import LTXLatentUpsamplePipeline
from pipeline_ltx_condition_control import LTXConditionPipeline
from diffusers.utils import export_to_video, load_video
from torchvision import transforms
import random
from controlnet_aux import CannyDetector
# from image_gen_aux import DepthPreprocessor
# import mediapipe as mp
from PIL import Image
import cv2
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
#pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=dtype)
pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=dtype)
pipeline.to(device)
pipe_upsample.to(device)
pipeline.vae.enable_tiling()
CONTROL_LORAS = {
"canny": {
"repo": "Lightricks/LTX-Video-ICLoRA-canny-13b-0.9.7",
"weight_name": "ltxv-097-ic-lora-canny-control-diffusers.safetensors",
"adapter_name": "canny_lora"
},
"depth": {
"repo": "Lightricks/LTX-Video-ICLoRA-depth-13b-0.9.7",
"weight_name": "ltxv-097-ic-lora-depth-control-diffusers.safetensors",
"adapter_name": "depth_lora"
},
"pose": {
"repo": "Lightricks/LTX-Video-ICLoRA-pose-13b-0.9.7",
"weight_name": "ltxv-097-ic-lora-pose-control-diffusers.safetensors",
"adapter_name": "pose_lora"
}
}
# load canny lora
pipeline.load_lora_weights(
CONTROL_LORAS["canny"]["repo"],
weight_name=CONTROL_LORAS["canny"]["weight_name"],
adapter_name=CONTROL_LORAS["canny"]["adapter_name"]
)
pipeline.set_adapters([CONTROL_LORAS["canny"]["adapter_name"]], adapter_weights=[1.0])
# Initialize MediaPipe pose estimation
# mp_drawing = mp.solutions.drawing_utils
# mp_drawing_styles = mp.solutions.drawing_styles
# mp_pose = mp.solutions.pose
canny_processor = CannyDetector()
@spaces.GPU()
def read_video(video) -> torch.Tensor:
"""
Reads a video file and converts it into a torch.Tensor with the shape [F, C, H, W].
"""
to_tensor_transform = transforms.ToTensor()
video_tensor = torch.stack([to_tensor_transform(img) for img in video])
return video_tensor
def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_temporal_compression_ratio):
height = height - (height % vae_temporal_compression_ratio)
width = width - (width % vae_temporal_compression_ratio)
return height, width
@spaces.GPU()
def load_control_lora(control_type, current_lora_state):
"""Load the specified control LoRA, unloading any previous one"""
if control_type not in CONTROL_LORAS:
raise ValueError(f"Unknown control type: {control_type}")
# If same LoRA is already loaded, do nothing
if current_lora_state == control_type:
print(f"{control_type} LoRA already loaded")
return current_lora_state
# Unload current LoRA if any
if current_lora_state is not None:
try:
pipeline.unload_lora_weights()
print(f"Unloaded previous LoRA: {current_lora_state}")
except Exception as e:
print(f"Warning: Could not unload previous LoRA: {e}")
# Load new LoRA
lora_config = CONTROL_LORAS[control_type]
try:
pipeline.load_lora_weights(
lora_config["repo"],
weight_name=lora_config["weight_name"],
adapter_name=lora_config["adapter_name"]
)
pipeline.set_adapters([lora_config["adapter_name"]], adapter_weights=[1.0])
new_lora_state = control_type
print(f"Loaded {control_type} LoRA successfully")
return new_lora_state
except Exception as e:
print(f"Error loading {control_type} LoRA: {e}")
raise
def process_video_for_canny(video, width, height):
"""
Process video for canny control.
"""
print("Processing video for canny control...")
canny_video = []
detect_resolution = video[0].size()
for frame in video:
# TODO: change resolution logic
canny_video.append(canny_processor(frame, low_threshold=50, high_threshold=200, detect_resolution=detect_resolution, image_resolution=(width, height)))
return canny_video
@spaces.GPU()
def process_video_for_pose(video):
"""
Process video for pose control using MediaPipe pose estimation.
Returns video frames with pose landmarks drawn on black background.
"""
print("Processing video for pose control...")
pose_video = []
with mp_pose.Pose(
static_image_mode=True,
model_complexity=1,
enable_segmentation=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
) as pose:
for frame in video:
# Convert PIL image to numpy array
frame_np = np.array(frame)
# Convert RGB to BGR for MediaPipe
frame_bgr = cv2.cvtColor(frame_np, cv2.COLOR_RGB2BGR)
# Process the frame
results = pose.process(frame_bgr)
# Create black background with same dimensions
pose_frame = np.zeros_like(frame_np)
# Draw pose landmarks if detected
if results.pose_landmarks:
mp_drawing.draw_landmarks(
pose_frame,
results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style()
)
# Convert back to PIL Image
pose_pil = Image.fromarray(pose_frame)
pose_video.append(pose_pil)
return pose_video
def process_input_video(reference_video, width, height):
"""
Process the input video for canny edges and return both processed video and preview.
"""
if reference_video is None:
return None
try:
# Load video into a list of PIL images
video = load_video(reference_video)
# Process video for canny edges
processed_video = process_video_for_canny(video, width, height)
# Create a preview video file for display
fps = 24
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
preview_path = tmp_file.name
export_to_video(processed_video, preview_path, fps=fps)
return preview_path
except Exception as e:
print(f"Error processing input video: {e}")
return None
def process_video_for_control(reference_video, control_type, width, height):
"""Process video based on the selected control type - now only used for non-canny types"""
video = load_video(reference_video)
if control_type == "canny":
# This should not be called for canny since it's pre-processed
processed_video = process_video_for_canny(video, width, height)
elif control_type == "depth":
processed_video = process_video_for_depth(video)
elif control_type == "pose":
processed_video = process_video_for_pose(video)
else:
processed_video = video
return processed_video
@spaces.GPU(duration=160)
def generate_video(
reference_video,
control_video, # New parameter for pre-processed video
prompt,
control_type,
duration=3.0,
negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
height=768,
width=1152,
num_inference_steps=7,
guidance_scale=1.0,
seed=0,
randomize_seed=False,
progress=gr.Progress()
):
try:
# Initialize models if needed
# Models are already loaded at startup
if reference_video is None:
return None, "Please upload a reference video."
if not prompt.strip():
return None, "Please enter a prompt."
# Handle seed
if randomize_seed:
seed = random.randint(0, 2**32 - 1)
# Calculate number of frames from duration (24 fps)
fps = 24
num_frames = int(duration * fps) + 1 # +1 for proper frame count
# Ensure num_frames is valid for the model (multiple of temporal compression + 1)
temporal_compression = pipeline.vae_temporal_compression_ratio
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
progress(0.1, desc="Preparing processed video...")
# Use pre-processed video frames if available (for canny), otherwise process on-demand
if control_video is not None:
# Use the pre-processed canny frames
processed_video = load_video(control_video)
else:
# Fallback to processing on-demand for other control types
processed_video = process_video_for_control(reference_video, control_type, width, height)
# Convert to tensor
processed_video = read_video(processed_video)
progress(0.2, desc="Preparing generation parameters...")
# Calculate downscaled dimensions
downscale_factor = 2 / 3
downscaled_height = int(height * downscale_factor)
downscaled_width = int(width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(
downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
)
progress(0.3, desc="Generating video at lower resolution...")
# 1. Generate video at smaller resolution
latents = pipeline(
reference_video=processed_video, # Use processed video
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
decode_timestep=0.05,
decode_noise_scale=0.025,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
output_type="latent",
).frames
progress(0.6, desc="Upscaling video...")
# 2. Upscale generated video
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
output_type="latent"
).frames
progress(0.8, desc="Final denoising and processing...")
# 3. Denoise the upscaled video
video_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.4,
num_inference_steps=10,
latents=upscaled_latents,
decode_timestep = 0.05,
guidance_scale=guidance_scale,
decode_noise_scale = 0.025,
image_cond_noise_scale=0.025,
generator=torch.Generator(device="cuda").manual_seed(seed),
output_type="pil",
).frames[0]
progress(0.9, desc="Finalizing output...")
# 4. Downscale to expected resolution
video_output = [frame.resize((width, height)) for frame in video_output]
# Export to temporary file
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
output_path = tmp_file.name
export_to_video(video_output, output_path, fps=fps)
progress(1.0, desc="Complete!")
return output_path, seed
except Exception as e:
print(e)
return None, seed
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# LTX Video Control Canny
"""
)
# State variables
#current_lora_state = gr.State(value=None)
with gr.Row():
with gr.Column(scale=1):
reference_video = gr.Video(
label="Reference Video",
height=300
)
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the video you want to generate...",
lines=3,
value="The Joker in his iconic purple suit and green hair, dancing alone in a dimly lit, run-down room. His movements are erratic and unpredictable, shifting between graceful and chaotic as he loses himself in the moment. The camera captures his theatrical gestures, his dance reflecting his unhinged personality. Moody lighting with shadows dancing across the walls, creating an atmosphere of beautiful madness."
)
# Control Type Selection
control_type = gr.Radio(
label="Control Type",
choices=["canny", "depth", "pose"],
value="canny",
visible=False,
info="Choose the type of control guidance for video generation"
)
duration = gr.Slider(
label="Duration (seconds)",
minimum=1.0,
maximum=10.0,
step=0.5,
value=2.5
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="What you don't want in the video...",
lines=2,
value="worst quality, inconsistent motion, blurry, jittery, distorted"
)
# Advanced Settings
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1024,
step=32,
value=768
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1536,
step=32,
value=1152
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=10,
maximum=50,
step=1,
value=7
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=15.0,
step=0.1,
value=1.0
)
with gr.Row():
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=False
)
seed = gr.Number(
label="Seed",
value=0,
precision=0
)
generate_btn = gr.Button(
"Generate",
)
with gr.Column(scale=1):
output_video = gr.Video(
label="Generated Video",
height=400
)
control_video = gr.Video(
label="Processed Control Video (Canny Edges)",
height=400,
visible=True
)
gr.Examples(
examples=[
["video_assets/vid_1.mp4", None, "A sleek cybernetic wolf sprinting through a neon-lit futuristic cityscape, its metallic form gleaming with electric blue circuits. The wolf's powerful stride carries it down rain-slicked streets between towering skyscrapers, while holographic advertisements cast colorful reflections on its chrome surface. Sparks of digital energy trail behind the creature as it moves with fluid mechanical precision through the urban maze, creating streaks of light in the misty night air.", "canny", 3, "worst quality, inconsistent motion, blurry, jittery, distorted", 768, 1152, 7, 1, 0, True],
["video_assets/vid_2.mp4", None, "A translucent ghost floating in a moonlit cemetery, raising a glowing spectral lantern that casts eerie light through the darkness. The ethereal figure's wispy form shimmers as it lifts the phantom light above its head, illuminating weathered tombstones and gnarled trees. Pale mist swirls around the ghost as the lantern pulses with otherworldly energy, creating haunting shadows that dance across the graveyard in the dead of night.", "canny", 2.5, "worst quality, inconsistent motion, blurry, jittery, distorted", 768, 1152, 7, 1, 0, True],
["video_assets/vid_3.mp4", None,"A sleek android assassin poised in a combat stance atop a futuristic skyscraper, arms positioned for perfect balance. The chrome-plated figure gleams under neon city lights as holographic data streams flow around its metallic form. Rain droplets bead on its polished surface while the sprawling cyberpunk metropolis stretches endlessly below. Electric circuits pulse beneath the android's transparent panels as it maintains its precise, calculated pose against the backdrop of flying vehicles and towering digital billboards.", "canny", 3, "worst quality, inconsistent motion, blurry, jittery, distorted", 768, 1152, 7, 1, 0, True],
["video_assets/vid_4.mp4", None, "Luminescent video game characters with glowing outlines and neon-bright details wandering through a digital landscape. Their bodies emit soft, colorful light that pulses gently as they move, creating trails of radiance behind them. The characters have a futuristic, stylized appearance with smooth surfaces that reflect their inner glow. They navigate naturally through their environment, their movements fluid and purposeful, while their bioluminescent features cast dynamic shadows and illuminate the surrounding area. The scene has a cyberpunk aesthetic with the characters' radiant presence serving as the primary light source in an otherwise darkened digital world.", "canny", 2.5, "worst quality, inconsistent motion, blurry, jittery, distorted", 768, 1152, 7, 1, 0, True],
],
inputs=[reference_video,
prompt,
control_type,
duration,
negative_prompt,
height,
width,
num_inference_steps,
guidance_scale,
seed,
randomize_seed],
outputs=[output_video, seed],
fn=generate_video, cache_examples="lazy"
)
# Event handlers
# Auto-process video when uploaded
reference_video.upload(
fn=process_input_video,
inputs=[reference_video, width, height],
outputs=[control_video],
show_progress=True
)
generate_btn.click(
fn=generate_video,
inputs=[
reference_video,
control_video, # Use pre-processed video
prompt,
control_type,
duration,
negative_prompt,
height,
width,
num_inference_steps,
guidance_scale,
seed,
randomize_seed
],
outputs=[output_video, seed],
show_progress=True
)
if __name__ == "__main__":
demo.launch()