linoyts HF Staff commited on
Commit
348560d
·
verified ·
1 Parent(s): dde2bf8

Upload pipeline_ltx_condition_control.py

Browse files
Files changed (1) hide show
  1. pipeline_ltx_condition_control.py +1496 -0
pipeline_ltx_condition_control.py ADDED
@@ -0,0 +1,1496 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 Lightricks and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from dataclasses import dataclass
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import PIL.Image
20
+ import torch
21
+ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
22
+ from diffusers.image_processor import PipelineImageInput
23
+ from diffusers.loaders import FromSingleFileMixin, LTXVideoLoraLoaderMixin
24
+ from diffusers.models.autoencoders import AutoencoderKLLTXVideo
25
+ from diffusers.models.transformers import LTXVideoTransformer3DModel
26
+ from diffusers.pipelines.ltx.pipeline_output import LTXPipelineOutput
27
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
28
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
29
+ from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
30
+ from diffusers.utils.torch_utils import randn_tensor
31
+ from diffusers.video_processor import VideoProcessor
32
+ from transformers import T5EncoderModel, T5TokenizerFast
33
+ from torchvision.transforms.functional import center_crop, resize
34
+
35
+ if is_torch_xla_available():
36
+ import torch_xla.core.xla_model as xm
37
+
38
+ XLA_AVAILABLE = True
39
+ else:
40
+ XLA_AVAILABLE = False
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+ EXAMPLE_DOC_STRING = """
45
+ Examples:
46
+ ```py
47
+ >>> import torch
48
+ >>> from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXConditionPipeline, LTXVideoCondition
49
+ >>> from diffusers.utils import export_to_video, load_video, load_image
50
+
51
+ >>> pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.5", torch_dtype=torch.bfloat16)
52
+ >>> pipe.to("cuda")
53
+
54
+ >>> # Load input image and video
55
+ >>> video = load_video(
56
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input-vid.mp4"
57
+ ... )
58
+ >>> image = load_image(
59
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input.jpg"
60
+ ... )
61
+
62
+ >>> # Create conditioning objects
63
+ >>> condition1 = LTXVideoCondition(
64
+ ... image=image,
65
+ ... frame_index=0,
66
+ ... )
67
+ >>> condition2 = LTXVideoCondition(
68
+ ... video=video,
69
+ ... frame_index=80,
70
+ ... )
71
+
72
+ >>> prompt = "The video depicts a long, straight highway stretching into the distance, flanked by metal guardrails. The road is divided into multiple lanes, with a few vehicles visible in the far distance. The surrounding landscape features dry, grassy fields on one side and rolling hills on the other. The sky is mostly clear with a few scattered clouds, suggesting a bright, sunny day. And then the camera switch to a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region."
73
+ >>> negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
74
+
75
+ >>> # Generate video
76
+ >>> generator = torch.Generator("cuda").manual_seed(0)
77
+ >>> # Text-only conditioning is also supported without the need to pass `conditions`
78
+ >>> video = pipe(
79
+ ... conditions=[condition1, condition2],
80
+ ... prompt=prompt,
81
+ ... negative_prompt=negative_prompt,
82
+ ... width=768,
83
+ ... height=512,
84
+ ... num_frames=161,
85
+ ... num_inference_steps=40,
86
+ ... generator=generator,
87
+ ... ).frames[0]
88
+
89
+ >>> export_to_video(video, "output.mp4", fps=24)
90
+ ```
91
+ """
92
+
93
+
94
+ @dataclass
95
+ class LTXVideoCondition:
96
+ """
97
+ Defines a single frame-conditioning item for LTX Video - a single frame or a sequence of frames.
98
+
99
+ Attributes:
100
+ image (`PIL.Image.Image`):
101
+ The image to condition the video on.
102
+ video (`List[PIL.Image.Image]`):
103
+ The video to condition the video on.
104
+ frame_index (`int`):
105
+ The frame index at which the image or video will conditionally effect the video generation.
106
+ strength (`float`, defaults to `1.0`):
107
+ The strength of the conditioning effect. A value of `1.0` means the conditioning effect is fully applied.
108
+ """
109
+
110
+ image: Optional[PIL.Image.Image] = None
111
+ video: Optional[List[PIL.Image.Image]] = None
112
+ frame_index: int = 0
113
+ strength: float = 1.0
114
+
115
+
116
+ # from LTX-Video/ltx_video/schedulers/rf.py
117
+ def linear_quadratic_schedule(num_steps, threshold_noise=0.025, linear_steps=None):
118
+ if linear_steps is None:
119
+ linear_steps = num_steps // 2
120
+ if num_steps < 2:
121
+ return torch.tensor([1.0])
122
+ linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)]
123
+ threshold_noise_step_diff = linear_steps - threshold_noise * num_steps
124
+ quadratic_steps = num_steps - linear_steps
125
+ quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps**2)
126
+ linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps**2)
127
+ const = quadratic_coef * (linear_steps**2)
128
+ quadratic_sigma_schedule = [
129
+ quadratic_coef * (i**2) + linear_coef * i + const for i in range(linear_steps, num_steps)
130
+ ]
131
+ sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0]
132
+ sigma_schedule = [1.0 - x for x in sigma_schedule]
133
+ return torch.tensor(sigma_schedule[:-1])
134
+
135
+
136
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
137
+ def calculate_shift(
138
+ image_seq_len,
139
+ base_seq_len: int = 256,
140
+ max_seq_len: int = 4096,
141
+ base_shift: float = 0.5,
142
+ max_shift: float = 1.15,
143
+ ):
144
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
145
+ b = base_shift - m * base_seq_len
146
+ mu = image_seq_len * m + b
147
+ return mu
148
+
149
+
150
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
151
+ def retrieve_timesteps(
152
+ scheduler,
153
+ num_inference_steps: Optional[int] = None,
154
+ device: Optional[Union[str, torch.device]] = None,
155
+ timesteps: Optional[List[int]] = None,
156
+ sigmas: Optional[List[float]] = None,
157
+ **kwargs,
158
+ ):
159
+ r"""
160
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
161
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
162
+
163
+ Args:
164
+ scheduler (`SchedulerMixin`):
165
+ The scheduler to get timesteps from.
166
+ num_inference_steps (`int`):
167
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
168
+ must be `None`.
169
+ device (`str` or `torch.device`, *optional*):
170
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
171
+ timesteps (`List[int]`, *optional*):
172
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
173
+ `num_inference_steps` and `sigmas` must be `None`.
174
+ sigmas (`List[float]`, *optional*):
175
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
176
+ `num_inference_steps` and `timesteps` must be `None`.
177
+
178
+ Returns:
179
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
180
+ second element is the number of inference steps.
181
+ """
182
+ if timesteps is not None and sigmas is not None:
183
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
184
+ if timesteps is not None:
185
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
186
+ if not accepts_timesteps:
187
+ raise ValueError(
188
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
189
+ f" timestep schedules. Please check whether you are using the correct scheduler."
190
+ )
191
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
192
+ timesteps = scheduler.timesteps
193
+ num_inference_steps = len(timesteps)
194
+ elif sigmas is not None:
195
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
196
+ if not accept_sigmas:
197
+ raise ValueError(
198
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
199
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
200
+ )
201
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
202
+ timesteps = scheduler.timesteps
203
+ num_inference_steps = len(timesteps)
204
+ else:
205
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
206
+ timesteps = scheduler.timesteps
207
+ return timesteps, num_inference_steps
208
+
209
+
210
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
211
+ def retrieve_latents(
212
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
213
+ ):
214
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
215
+ return encoder_output.latent_dist.sample(generator)
216
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
217
+ return encoder_output.latent_dist.mode()
218
+ elif hasattr(encoder_output, "latents"):
219
+ return encoder_output.latents
220
+ else:
221
+ raise AttributeError("Could not access latents of provided encoder_output")
222
+
223
+
224
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
225
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
226
+ r"""
227
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
228
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
229
+ Flawed](https://huggingface.co/papers/2305.08891).
230
+
231
+ Args:
232
+ noise_cfg (`torch.Tensor`):
233
+ The predicted noise tensor for the guided diffusion process.
234
+ noise_pred_text (`torch.Tensor`):
235
+ The predicted noise tensor for the text-guided diffusion process.
236
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
237
+ A rescale factor applied to the noise predictions.
238
+
239
+ Returns:
240
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
241
+ """
242
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
243
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
244
+ # rescale the results from guidance (fixes overexposure)
245
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
246
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
247
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
248
+ return noise_cfg
249
+
250
+
251
+ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin):
252
+ r"""
253
+ Pipeline for text/image/video-to-video generation.
254
+
255
+ Reference: https://github.com/Lightricks/LTX-Video
256
+
257
+ Args:
258
+ transformer ([`LTXVideoTransformer3DModel`]):
259
+ Conditional Transformer architecture to denoise the encoded video latents.
260
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
261
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
262
+ vae ([`AutoencoderKLLTXVideo`]):
263
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
264
+ text_encoder ([`T5EncoderModel`]):
265
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
266
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
267
+ tokenizer (`CLIPTokenizer`):
268
+ Tokenizer of class
269
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
270
+ tokenizer (`T5TokenizerFast`):
271
+ Second Tokenizer of class
272
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
273
+ """
274
+
275
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
276
+ _optional_components = []
277
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
278
+
279
+ def __init__(
280
+ self,
281
+ scheduler: FlowMatchEulerDiscreteScheduler,
282
+ vae: AutoencoderKLLTXVideo,
283
+ text_encoder: T5EncoderModel,
284
+ tokenizer: T5TokenizerFast,
285
+ transformer: LTXVideoTransformer3DModel,
286
+ ):
287
+ super().__init__()
288
+
289
+ self.register_modules(
290
+ vae=vae,
291
+ text_encoder=text_encoder,
292
+ tokenizer=tokenizer,
293
+ transformer=transformer,
294
+ scheduler=scheduler,
295
+ )
296
+
297
+ self.vae_spatial_compression_ratio = (
298
+ self.vae.spatial_compression_ratio if getattr(self, "vae", None) is not None else 32
299
+ )
300
+ self.vae_temporal_compression_ratio = (
301
+ self.vae.temporal_compression_ratio if getattr(self, "vae", None) is not None else 8
302
+ )
303
+ self.transformer_spatial_patch_size = (
304
+ self.transformer.config.patch_size if getattr(self, "transformer", None) is not None else 1
305
+ )
306
+ self.transformer_temporal_patch_size = (
307
+ self.transformer.config.patch_size_t if getattr(self, "transformer") is not None else 1
308
+ )
309
+
310
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)
311
+ self.tokenizer_max_length = (
312
+ self.tokenizer.model_max_length if getattr(self, "tokenizer", None) is not None else 128
313
+ )
314
+
315
+ self.default_height = 512
316
+ self.default_width = 704
317
+ self.default_frames = 121
318
+
319
+ def _get_t5_prompt_embeds(
320
+ self,
321
+ prompt: Union[str, List[str]] = None,
322
+ num_videos_per_prompt: int = 1,
323
+ max_sequence_length: int = 256,
324
+ device: Optional[torch.device] = None,
325
+ dtype: Optional[torch.dtype] = None,
326
+ ):
327
+ device = device or self._execution_device
328
+ dtype = dtype or self.text_encoder.dtype
329
+
330
+ prompt = [prompt] if isinstance(prompt, str) else prompt
331
+ batch_size = len(prompt)
332
+
333
+ text_inputs = self.tokenizer(
334
+ prompt,
335
+ padding="max_length",
336
+ max_length=max_sequence_length,
337
+ truncation=True,
338
+ add_special_tokens=True,
339
+ return_tensors="pt",
340
+ )
341
+ text_input_ids = text_inputs.input_ids
342
+ prompt_attention_mask = text_inputs.attention_mask
343
+ prompt_attention_mask = prompt_attention_mask.bool().to(device)
344
+
345
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
346
+
347
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
348
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
349
+ logger.warning(
350
+ "The following part of your input was truncated because `max_sequence_length` is set to "
351
+ f" {max_sequence_length} tokens: {removed_text}"
352
+ )
353
+
354
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)[0]
355
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
356
+
357
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
358
+ _, seq_len, _ = prompt_embeds.shape
359
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
360
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
361
+
362
+ prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
363
+ prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1)
364
+
365
+ return prompt_embeds, prompt_attention_mask
366
+
367
+ # Copied from diffusers.pipelines.mochi.pipeline_mochi.MochiPipeline.encode_prompt
368
+ def encode_prompt(
369
+ self,
370
+ prompt: Union[str, List[str]],
371
+ negative_prompt: Optional[Union[str, List[str]]] = None,
372
+ do_classifier_free_guidance: bool = True,
373
+ num_videos_per_prompt: int = 1,
374
+ prompt_embeds: Optional[torch.Tensor] = None,
375
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
376
+ prompt_attention_mask: Optional[torch.Tensor] = None,
377
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
378
+ max_sequence_length: int = 256,
379
+ device: Optional[torch.device] = None,
380
+ dtype: Optional[torch.dtype] = None,
381
+ ):
382
+ r"""
383
+ Encodes the prompt into text encoder hidden states.
384
+
385
+ Args:
386
+ prompt (`str` or `List[str]`, *optional*):
387
+ prompt to be encoded
388
+ negative_prompt (`str` or `List[str]`, *optional*):
389
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
390
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
391
+ less than `1`).
392
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
393
+ Whether to use classifier free guidance or not.
394
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
395
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
396
+ prompt_embeds (`torch.Tensor`, *optional*):
397
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
398
+ provided, text embeddings will be generated from `prompt` input argument.
399
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
400
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
401
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
402
+ argument.
403
+ device: (`torch.device`, *optional*):
404
+ torch device
405
+ dtype: (`torch.dtype`, *optional*):
406
+ torch dtype
407
+ """
408
+ device = device or self._execution_device
409
+
410
+ prompt = [prompt] if isinstance(prompt, str) else prompt
411
+ if prompt is not None:
412
+ batch_size = len(prompt)
413
+ else:
414
+ batch_size = prompt_embeds.shape[0]
415
+
416
+ if prompt_embeds is None:
417
+ prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
418
+ prompt=prompt,
419
+ num_videos_per_prompt=num_videos_per_prompt,
420
+ max_sequence_length=max_sequence_length,
421
+ device=device,
422
+ dtype=dtype,
423
+ )
424
+
425
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
426
+ negative_prompt = negative_prompt or ""
427
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
428
+
429
+ if prompt is not None and type(prompt) is not type(negative_prompt):
430
+ raise TypeError(
431
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
432
+ f" {type(prompt)}."
433
+ )
434
+ elif batch_size != len(negative_prompt):
435
+ raise ValueError(
436
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
437
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
438
+ " the batch size of `prompt`."
439
+ )
440
+
441
+ negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds(
442
+ prompt=negative_prompt,
443
+ num_videos_per_prompt=num_videos_per_prompt,
444
+ max_sequence_length=max_sequence_length,
445
+ device=device,
446
+ dtype=dtype,
447
+ )
448
+
449
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
450
+
451
+ def check_inputs(
452
+ self,
453
+ prompt,
454
+ conditions,
455
+ image,
456
+ video,
457
+ frame_index,
458
+ strength,
459
+ denoise_strength,
460
+ height,
461
+ width,
462
+ callback_on_step_end_tensor_inputs=None,
463
+ prompt_embeds=None,
464
+ negative_prompt_embeds=None,
465
+ prompt_attention_mask=None,
466
+ negative_prompt_attention_mask=None,
467
+ reference_video=None,
468
+ ):
469
+ if height % 32 != 0 or width % 32 != 0:
470
+ raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
471
+
472
+ if callback_on_step_end_tensor_inputs is not None and not all(
473
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
474
+ ):
475
+ raise ValueError(
476
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
477
+ )
478
+
479
+ if prompt is not None and prompt_embeds is not None:
480
+ raise ValueError(
481
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
482
+ " only forward one of the two."
483
+ )
484
+ elif prompt is None and prompt_embeds is None:
485
+ raise ValueError(
486
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
487
+ )
488
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
489
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
490
+
491
+ if prompt_embeds is not None and prompt_attention_mask is None:
492
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
493
+
494
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
495
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
496
+
497
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
498
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
499
+ raise ValueError(
500
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
501
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
502
+ f" {negative_prompt_embeds.shape}."
503
+ )
504
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
505
+ raise ValueError(
506
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
507
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
508
+ f" {negative_prompt_attention_mask.shape}."
509
+ )
510
+
511
+ if conditions is not None and (image is not None or video is not None):
512
+ raise ValueError("If `conditions` is provided, `image` and `video` must not be provided.")
513
+
514
+ if conditions is None:
515
+ if isinstance(image, list) and isinstance(frame_index, list) and len(image) != len(frame_index):
516
+ raise ValueError(
517
+ "If `conditions` is not provided, `image` and `frame_index` must be of the same length."
518
+ )
519
+ elif isinstance(image, list) and isinstance(strength, list) and len(image) != len(strength):
520
+ raise ValueError("If `conditions` is not provided, `image` and `strength` must be of the same length.")
521
+ elif isinstance(video, list) and isinstance(frame_index, list) and len(video) != len(frame_index):
522
+ raise ValueError(
523
+ "If `conditions` is not provided, `video` and `frame_index` must be of the same length."
524
+ )
525
+ elif isinstance(video, list) and isinstance(strength, list) and len(video) != len(strength):
526
+ raise ValueError("If `conditions` is not provided, `video` and `strength` must be of the same length.")
527
+
528
+ if denoise_strength < 0 or denoise_strength > 1:
529
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {denoise_strength}")
530
+
531
+ if reference_video is not None:
532
+ if not isinstance(reference_video, torch.Tensor):
533
+ raise ValueError(
534
+ "`reference_video` must be a torch.Tensor with shape [F, C, H, W] as returned by read_video()."
535
+ )
536
+ if reference_video.ndim != 4:
537
+ raise ValueError(
538
+ f"`reference_video` must be a 4D tensor with shape [F, C, H, W], but got shape {reference_video.shape}."
539
+ )
540
+
541
+ @staticmethod
542
+ def _prepare_video_ids(
543
+ batch_size: int,
544
+ num_frames: int,
545
+ height: int,
546
+ width: int,
547
+ patch_size: int = 1,
548
+ patch_size_t: int = 1,
549
+ device: torch.device = None,
550
+ ) -> torch.Tensor:
551
+ latent_sample_coords = torch.meshgrid(
552
+ torch.arange(0, num_frames, patch_size_t, device=device),
553
+ torch.arange(0, height, patch_size, device=device),
554
+ torch.arange(0, width, patch_size, device=device),
555
+ indexing="ij",
556
+ )
557
+ latent_sample_coords = torch.stack(latent_sample_coords, dim=0)
558
+ latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
559
+ latent_coords = latent_coords.reshape(batch_size, -1, num_frames * height * width)
560
+
561
+ return latent_coords
562
+
563
+ @staticmethod
564
+ def _scale_video_ids(
565
+ video_ids: torch.Tensor,
566
+ scale_factor: int = 32,
567
+ scale_factor_t: int = 8,
568
+ frame_index: int = 0,
569
+ device: torch.device = None,
570
+ ) -> torch.Tensor:
571
+ scaled_latent_coords = (
572
+ video_ids
573
+ * torch.tensor([scale_factor_t, scale_factor, scale_factor], device=video_ids.device)[None, :, None]
574
+ )
575
+ scaled_latent_coords[:, 0] = (scaled_latent_coords[:, 0] + 1 - scale_factor_t).clamp(min=0)
576
+ scaled_latent_coords[:, 0] += frame_index
577
+
578
+ return scaled_latent_coords
579
+
580
+ @staticmethod
581
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._pack_latents
582
+ def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
583
+ # Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
584
+ # The patch dimensions are then permuted and collapsed into the channel dimension of shape:
585
+ # [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
586
+ # dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
587
+ batch_size, num_channels, num_frames, height, width = latents.shape
588
+ post_patch_num_frames = num_frames // patch_size_t
589
+ post_patch_height = height // patch_size
590
+ post_patch_width = width // patch_size
591
+ latents = latents.reshape(
592
+ batch_size,
593
+ -1,
594
+ post_patch_num_frames,
595
+ patch_size_t,
596
+ post_patch_height,
597
+ patch_size,
598
+ post_patch_width,
599
+ patch_size,
600
+ )
601
+ latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
602
+ return latents
603
+
604
+ @staticmethod
605
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._unpack_latents
606
+ def _unpack_latents(
607
+ latents: torch.Tensor, num_frames: int, height: int, width: int, patch_size: int = 1, patch_size_t: int = 1
608
+ ) -> torch.Tensor:
609
+ # Packed latents of shape [B, S, D] (S is the effective video sequence length, D is the effective feature dimensions)
610
+ # are unpacked and reshaped into a video tensor of shape [B, C, F, H, W]. This is the inverse operation of
611
+ # what happens in the `_pack_latents` method.
612
+ batch_size = latents.size(0)
613
+ latents = latents.reshape(batch_size, num_frames, height, width, -1, patch_size_t, patch_size, patch_size)
614
+ latents = latents.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(2, 3)
615
+ return latents
616
+
617
+ @staticmethod
618
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._normalize_latents
619
+ def _normalize_latents(
620
+ latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
621
+ ) -> torch.Tensor:
622
+ # Normalize latents across the channel dimension [B, C, F, H, W]
623
+ latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
624
+ latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
625
+ latents = (latents - latents_mean) * scaling_factor / latents_std
626
+ return latents
627
+
628
+ @staticmethod
629
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._denormalize_latents
630
+ def _denormalize_latents(
631
+ latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
632
+ ) -> torch.Tensor:
633
+ # Denormalize latents across the channel dimension [B, C, F, H, W]
634
+ latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
635
+ latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
636
+ latents = latents * latents_std / scaling_factor + latents_mean
637
+ return latents
638
+
639
+ def trim_conditioning_sequence(self, start_frame: int, sequence_num_frames: int, target_num_frames: int):
640
+ """
641
+ Trim a conditioning sequence to the allowed number of frames.
642
+
643
+ Args:
644
+ start_frame (int): The target frame number of the first frame in the sequence.
645
+ sequence_num_frames (int): The number of frames in the sequence.
646
+ target_num_frames (int): The target number of frames in the generated video.
647
+ Returns:
648
+ int: updated sequence length
649
+ """
650
+ scale_factor = self.vae_temporal_compression_ratio
651
+ num_frames = min(sequence_num_frames, target_num_frames - start_frame)
652
+ # Trim down to a multiple of temporal_scale_factor frames plus 1
653
+ num_frames = (num_frames - 1) // scale_factor * scale_factor + 1
654
+ return num_frames
655
+
656
+ @staticmethod
657
+ def add_noise_to_image_conditioning_latents(
658
+ t: float,
659
+ init_latents: torch.Tensor,
660
+ latents: torch.Tensor,
661
+ noise_scale: float,
662
+ conditioning_mask: torch.Tensor,
663
+ generator,
664
+ eps=1e-6,
665
+ ):
666
+ """
667
+ Add timestep-dependent noise to the hard-conditioning latents. This helps with motion continuity, especially
668
+ when conditioned on a single frame.
669
+ """
670
+ noise = randn_tensor(
671
+ latents.shape,
672
+ generator=generator,
673
+ device=latents.device,
674
+ dtype=latents.dtype,
675
+ )
676
+ # Add noise only to hard-conditioning latents (conditioning_mask = 1.0)
677
+ need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1)
678
+ noised_latents = init_latents + noise_scale * noise * (t**2)
679
+ latents = torch.where(need_to_noise, noised_latents, latents)
680
+ return latents
681
+
682
+ def prepare_latents(
683
+ self,
684
+ conditions: Optional[List[torch.Tensor]] = None,
685
+ condition_strength: Optional[List[float]] = None,
686
+ condition_frame_index: Optional[List[int]] = None,
687
+ batch_size: int = 1,
688
+ num_channels_latents: int = 128,
689
+ height: int = 512,
690
+ width: int = 704,
691
+ num_frames: int = 161,
692
+ num_prefix_latent_frames: int = 2,
693
+ sigma: Optional[torch.Tensor] = None,
694
+ latents: Optional[torch.Tensor] = None,
695
+ generator: Optional[torch.Generator] = None,
696
+ device: Optional[torch.device] = None,
697
+ dtype: Optional[torch.dtype] = None,
698
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
699
+ num_latent_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
700
+ latent_height = height // self.vae_spatial_compression_ratio
701
+ latent_width = width // self.vae_spatial_compression_ratio
702
+
703
+ shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
704
+
705
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
706
+ if latents is not None and sigma is not None:
707
+ if latents.shape != shape:
708
+ raise ValueError(
709
+ f"Latents shape {latents.shape} does not match expected shape {shape}. Please check the input."
710
+ )
711
+ latents = latents.to(device=device, dtype=dtype)
712
+ sigma = sigma.to(device=device, dtype=dtype)
713
+ latents = sigma * noise + (1 - sigma) * latents
714
+ else:
715
+ latents = noise
716
+
717
+ if len(conditions) > 0:
718
+ condition_latent_frames_mask = torch.zeros(
719
+ (batch_size, num_latent_frames), device=device, dtype=torch.float32
720
+ )
721
+
722
+ extra_conditioning_latents = []
723
+ extra_conditioning_video_ids = []
724
+ extra_conditioning_mask = []
725
+ extra_conditioning_num_latents = 0
726
+ for data, strength, frame_index in zip(conditions, condition_strength, condition_frame_index, strict=False):
727
+ condition_latents = retrieve_latents(self.vae.encode(data), generator=generator)
728
+ condition_latents = self._normalize_latents(
729
+ condition_latents, self.vae.latents_mean, self.vae.latents_std
730
+ ).to(device, dtype=dtype)
731
+
732
+ num_data_frames = data.size(2)
733
+ num_cond_frames = condition_latents.size(2)
734
+
735
+ if frame_index == 0:
736
+ latents[:, :, :num_cond_frames] = torch.lerp(
737
+ latents[:, :, :num_cond_frames], condition_latents, strength
738
+ )
739
+ condition_latent_frames_mask[:, :num_cond_frames] = strength
740
+
741
+ else:
742
+ if num_data_frames > 1:
743
+ if num_cond_frames < num_prefix_latent_frames:
744
+ raise ValueError(
745
+ f"Number of latent frames must be at least {num_prefix_latent_frames} but got {num_data_frames}."
746
+ )
747
+
748
+ if num_cond_frames > num_prefix_latent_frames:
749
+ start_frame = frame_index // self.vae_temporal_compression_ratio + num_prefix_latent_frames
750
+ end_frame = start_frame + num_cond_frames - num_prefix_latent_frames
751
+ latents[:, :, start_frame:end_frame] = torch.lerp(
752
+ latents[:, :, start_frame:end_frame],
753
+ condition_latents[:, :, num_prefix_latent_frames:],
754
+ strength,
755
+ )
756
+ condition_latent_frames_mask[:, start_frame:end_frame] = strength
757
+ condition_latents = condition_latents[:, :, :num_prefix_latent_frames]
758
+
759
+ noise = randn_tensor(condition_latents.shape, generator=generator, device=device, dtype=dtype)
760
+ condition_latents = torch.lerp(noise, condition_latents, strength)
761
+
762
+ condition_video_ids = self._prepare_video_ids(
763
+ batch_size,
764
+ condition_latents.size(2),
765
+ latent_height,
766
+ latent_width,
767
+ patch_size=self.transformer_spatial_patch_size,
768
+ patch_size_t=self.transformer_temporal_patch_size,
769
+ device=device,
770
+ )
771
+ condition_video_ids = self._scale_video_ids(
772
+ condition_video_ids,
773
+ scale_factor=self.vae_spatial_compression_ratio,
774
+ scale_factor_t=self.vae_temporal_compression_ratio,
775
+ frame_index=frame_index,
776
+ device=device,
777
+ )
778
+ condition_latents = self._pack_latents(
779
+ condition_latents,
780
+ self.transformer_spatial_patch_size,
781
+ self.transformer_temporal_patch_size,
782
+ )
783
+ condition_conditioning_mask = torch.full(
784
+ condition_latents.shape[:2], strength, device=device, dtype=dtype
785
+ )
786
+
787
+ extra_conditioning_latents.append(condition_latents)
788
+ extra_conditioning_video_ids.append(condition_video_ids)
789
+ extra_conditioning_mask.append(condition_conditioning_mask)
790
+ extra_conditioning_num_latents += condition_latents.size(1)
791
+
792
+ video_ids = self._prepare_video_ids(
793
+ batch_size,
794
+ num_latent_frames,
795
+ latent_height,
796
+ latent_width,
797
+ patch_size_t=self.transformer_temporal_patch_size,
798
+ patch_size=self.transformer_spatial_patch_size,
799
+ device=device,
800
+ )
801
+ if len(conditions) > 0:
802
+ conditioning_mask = condition_latent_frames_mask.gather(1, video_ids[:, 0])
803
+ else:
804
+ conditioning_mask, extra_conditioning_num_latents = None, 0
805
+ video_ids = self._scale_video_ids(
806
+ video_ids,
807
+ scale_factor=self.vae_spatial_compression_ratio,
808
+ scale_factor_t=self.vae_temporal_compression_ratio,
809
+ frame_index=0,
810
+ device=device,
811
+ )
812
+ latents = self._pack_latents(
813
+ latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
814
+ )
815
+
816
+ if len(conditions) > 0 and len(extra_conditioning_latents) > 0:
817
+ latents = torch.cat([*extra_conditioning_latents, latents], dim=1)
818
+ video_ids = torch.cat([*extra_conditioning_video_ids, video_ids], dim=2)
819
+ conditioning_mask = torch.cat([*extra_conditioning_mask, conditioning_mask], dim=1)
820
+
821
+ return latents, conditioning_mask, video_ids, extra_conditioning_num_latents
822
+
823
+ def get_timesteps(self, sigmas, timesteps, num_inference_steps, strength):
824
+ num_steps = min(int(num_inference_steps * strength), num_inference_steps)
825
+ start_index = max(num_inference_steps - num_steps, 0)
826
+ sigmas = sigmas[start_index:]
827
+ timesteps = timesteps[start_index:]
828
+ return sigmas, timesteps, num_inference_steps - start_index
829
+
830
+ @property
831
+ def guidance_scale(self):
832
+ return self._guidance_scale
833
+
834
+ @property
835
+ def guidance_rescale(self):
836
+ return self._guidance_rescale
837
+
838
+ @property
839
+ def do_classifier_free_guidance(self):
840
+ return self._guidance_scale > 1.0
841
+
842
+ @property
843
+ def num_timesteps(self):
844
+ return self._num_timesteps
845
+
846
+ @property
847
+ def current_timestep(self):
848
+ return self._current_timestep
849
+
850
+ @property
851
+ def attention_kwargs(self):
852
+ return self._attention_kwargs
853
+
854
+ @property
855
+ def interrupt(self):
856
+ return self._interrupt
857
+
858
+ @torch.no_grad()
859
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
860
+ def __call__(
861
+ self,
862
+ conditions: Union[LTXVideoCondition, List[LTXVideoCondition]] = None,
863
+ image: Union[PipelineImageInput, List[PipelineImageInput]] = None,
864
+ video: List[PipelineImageInput] = None,
865
+ frame_index: Union[int, List[int]] = 0,
866
+ strength: Union[float, List[float]] = 1.0,
867
+ denoise_strength: float = 1.0,
868
+ prompt: Union[str, List[str]] = None,
869
+ negative_prompt: Optional[Union[str, List[str]]] = None,
870
+ height: int = 512,
871
+ width: int = 704,
872
+ num_frames: int = 161,
873
+ frame_rate: int = 25,
874
+ num_inference_steps: int = 50,
875
+ timesteps: List[int] = None,
876
+ guidance_scale: float = 3,
877
+ guidance_rescale: float = 0.0,
878
+ image_cond_noise_scale: float = 0.15,
879
+ num_videos_per_prompt: Optional[int] = 1,
880
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
881
+ latents: Optional[torch.Tensor] = None,
882
+ reference_video: Optional[torch.Tensor] = None,
883
+ output_reference_comparison: bool = False,
884
+ prompt_embeds: Optional[torch.Tensor] = None,
885
+ prompt_attention_mask: Optional[torch.Tensor] = None,
886
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
887
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
888
+ decode_timestep: Union[float, List[float]] = 0.0,
889
+ decode_noise_scale: Optional[Union[float, List[float]]] = None,
890
+ output_type: Optional[str] = "pil",
891
+ return_dict: bool = True,
892
+ attention_kwargs: Optional[Dict[str, Any]] = None,
893
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
894
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
895
+ max_sequence_length: int = 256,
896
+ ):
897
+ r"""
898
+ Function invoked when calling the pipeline for generation.
899
+
900
+ Args:
901
+ conditions (`List[LTXVideoCondition], *optional*`):
902
+ The list of frame-conditioning items for the video generation.If not provided, conditions will be
903
+ created using `image`, `video`, `frame_index` and `strength`.
904
+ image (`PipelineImageInput` or `List[PipelineImageInput]`, *optional*):
905
+ The image or images to condition the video generation. If not provided, one has to pass `video` or
906
+ `conditions`.
907
+ video (`List[PipelineImageInput]`, *optional*):
908
+ The video to condition the video generation. If not provided, one has to pass `image` or `conditions`.
909
+ frame_index (`int` or `List[int]`, *optional*):
910
+ The frame index or frame indices at which the image or video will conditionally effect the video
911
+ generation. If not provided, one has to pass `conditions`.
912
+ strength (`float` or `List[float]`, *optional*):
913
+ The strength or strengths of the conditioning effect. If not provided, one has to pass `conditions`.
914
+ denoise_strength (`float`, defaults to `1.0`):
915
+ The strength of the noise added to the latents for editing. Higher strength leads to more noise added
916
+ to the latents, therefore leading to more differences between original video and generated video. This
917
+ is useful for video-to-video editing.
918
+ prompt (`str` or `List[str]`, *optional*):
919
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
920
+ instead.
921
+ height (`int`, defaults to `512`):
922
+ The height in pixels of the generated image. This is set to 480 by default for the best results.
923
+ width (`int`, defaults to `704`):
924
+ The width in pixels of the generated image. This is set to 848 by default for the best results.
925
+ num_frames (`int`, defaults to `161`):
926
+ The number of video frames to generate
927
+ num_inference_steps (`int`, *optional*, defaults to 50):
928
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
929
+ expense of slower inference.
930
+ timesteps (`List[int]`, *optional*):
931
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
932
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
933
+ passed will be used. Must be in descending order.
934
+ guidance_scale (`float`, defaults to `3 `):
935
+ Guidance scale as defined in [Classifier-Free Diffusion
936
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
937
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
938
+ `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
939
+ the text `prompt`, usually at the expense of lower image quality.
940
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
941
+ Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
942
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
943
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
944
+ Guidance rescale factor should fix overexposure when using zero terminal SNR.
945
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
946
+ The number of videos to generate per prompt.
947
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
948
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
949
+ to make generation deterministic.
950
+ latents (`torch.Tensor`, *optional*):
951
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
952
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
953
+ tensor will ge generated by sampling using the supplied random `generator`.
954
+ reference_video (`torch.Tensor`, *optional*):
955
+ An optional reference video to guide the generation process. Should be a tensor with shape
956
+ [F, C, H, W] in range [0, 1] as returned by `read_video()` from video_utils. The reference video
957
+ will be encoded and concatenated to the latent sequence, providing global guidance while remaining
958
+ unchanged during denoising. The reference video can be of any size and will be automatically
959
+ resized and cropped to match the target dimensions.
960
+ output_reference_comparison (`bool`, defaults to `False`):
961
+ Whether to output a side-by-side comparison showing both the reference video (if provided) and the
962
+ generated video. If `False`, only the generated video is returned. Only applies when `reference_video`
963
+ is provided.
964
+ prompt_embeds (`torch.Tensor`, *optional*):
965
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
966
+ provided, text embeddings will be generated from `prompt` input argument.
967
+ prompt_attention_mask (`torch.Tensor`, *optional*):
968
+ Pre-generated attention mask for text embeddings.
969
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
970
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
971
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
972
+ negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
973
+ Pre-generated attention mask for negative text embeddings.
974
+ decode_timestep (`float`, defaults to `0.0`):
975
+ The timestep at which generated video is decoded.
976
+ decode_noise_scale (`float`, defaults to `None`):
977
+ The interpolation factor between random noise and denoised latents at the decode timestep.
978
+ output_type (`str`, *optional*, defaults to `"pil"`):
979
+ The output format of the generate image. Choose between
980
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
981
+ return_dict (`bool`, *optional*, defaults to `True`):
982
+ Whether or not to return a [`~pipelines.ltx.LTXPipelineOutput`] instead of a plain tuple.
983
+ attention_kwargs (`dict`, *optional*):
984
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
985
+ `self.processor` in
986
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
987
+ callback_on_step_end (`Callable`, *optional*):
988
+ A function that calls at the end of each denoising steps during the inference. The function is called
989
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
990
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
991
+ `callback_on_step_end_tensor_inputs`.
992
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
993
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
994
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
995
+ `._callback_tensor_inputs` attribute of your pipeline class.
996
+ max_sequence_length (`int` defaults to `128 `):
997
+ Maximum sequence length to use with the `prompt`.
998
+
999
+ Examples:
1000
+
1001
+ Returns:
1002
+ [`~pipelines.ltx.LTXPipelineOutput`] or `tuple`:
1003
+ If `return_dict` is `True`, [`~pipelines.ltx.LTXPipelineOutput`] is returned, otherwise a `tuple` is
1004
+ returned where the first element is a list with the generated images.
1005
+ """
1006
+
1007
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1008
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1009
+ # if latents is not None:
1010
+ # raise ValueError("Passing latents is not yet supported.")
1011
+
1012
+ # 1. Check inputs. Raise error if not correct
1013
+ self.check_inputs(
1014
+ prompt=prompt,
1015
+ conditions=conditions,
1016
+ image=image,
1017
+ video=video,
1018
+ frame_index=frame_index,
1019
+ strength=strength,
1020
+ denoise_strength=denoise_strength,
1021
+ height=height,
1022
+ width=width,
1023
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
1024
+ prompt_embeds=prompt_embeds,
1025
+ negative_prompt_embeds=negative_prompt_embeds,
1026
+ prompt_attention_mask=prompt_attention_mask,
1027
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
1028
+ reference_video=reference_video,
1029
+ )
1030
+
1031
+ self._guidance_scale = guidance_scale
1032
+ self._guidance_rescale = guidance_rescale
1033
+ self._attention_kwargs = attention_kwargs
1034
+ self._interrupt = False
1035
+ self._current_timestep = None
1036
+
1037
+ # 2. Define call parameters
1038
+ if prompt is not None and isinstance(prompt, str):
1039
+ batch_size = 1
1040
+ elif prompt is not None and isinstance(prompt, list):
1041
+ batch_size = len(prompt)
1042
+ else:
1043
+ batch_size = prompt_embeds.shape[0]
1044
+
1045
+ if conditions is not None:
1046
+ if not isinstance(conditions, list):
1047
+ conditions = [conditions]
1048
+
1049
+ strength = [condition.strength for condition in conditions]
1050
+ frame_index = [condition.frame_index for condition in conditions]
1051
+ image = [condition.image for condition in conditions]
1052
+ video = [condition.video for condition in conditions]
1053
+ elif image is not None or video is not None:
1054
+ if not isinstance(image, list):
1055
+ image = [image]
1056
+ num_conditions = 1
1057
+ elif isinstance(image, list):
1058
+ num_conditions = len(image)
1059
+ if not isinstance(video, list):
1060
+ video = [video]
1061
+ num_conditions = 1
1062
+ elif isinstance(video, list):
1063
+ num_conditions = len(video)
1064
+
1065
+ if not isinstance(frame_index, list):
1066
+ frame_index = [frame_index] * num_conditions
1067
+ if not isinstance(strength, list):
1068
+ strength = [strength] * num_conditions
1069
+
1070
+ device = self._execution_device
1071
+ vae_dtype = self.vae.dtype
1072
+
1073
+ # 3. Prepare text embeddings & conditioning image/video
1074
+ (
1075
+ prompt_embeds,
1076
+ prompt_attention_mask,
1077
+ negative_prompt_embeds,
1078
+ negative_prompt_attention_mask,
1079
+ ) = self.encode_prompt(
1080
+ prompt=prompt,
1081
+ negative_prompt=negative_prompt,
1082
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1083
+ num_videos_per_prompt=num_videos_per_prompt,
1084
+ prompt_embeds=prompt_embeds,
1085
+ negative_prompt_embeds=negative_prompt_embeds,
1086
+ prompt_attention_mask=prompt_attention_mask,
1087
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
1088
+ max_sequence_length=max_sequence_length,
1089
+ device=device,
1090
+ )
1091
+ if self.do_classifier_free_guidance:
1092
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1093
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
1094
+
1095
+ conditioning_tensors = []
1096
+ is_conditioning_image_or_video = image is not None or video is not None
1097
+ if is_conditioning_image_or_video:
1098
+ for condition_image, condition_video, condition_frame_index, condition_strength in zip(
1099
+ image, video, frame_index, strength, strict=False
1100
+ ):
1101
+ if condition_image is not None:
1102
+ condition_tensor = (
1103
+ self.video_processor.preprocess(condition_image, height, width)
1104
+ .unsqueeze(2)
1105
+ .to(device, dtype=vae_dtype)
1106
+ )
1107
+ elif condition_video is not None:
1108
+ condition_tensor = self.video_processor.preprocess_video(condition_video, height, width)
1109
+ num_frames_input = condition_tensor.size(2)
1110
+ num_frames_output = self.trim_conditioning_sequence(
1111
+ condition_frame_index, num_frames_input, num_frames
1112
+ )
1113
+ condition_tensor = condition_tensor[:, :, :num_frames_output]
1114
+ condition_tensor = condition_tensor.to(device, dtype=vae_dtype)
1115
+ else:
1116
+ raise ValueError("Either `image` or `video` must be provided for conditioning.")
1117
+
1118
+ if condition_tensor.size(2) % self.vae_temporal_compression_ratio != 1:
1119
+ raise ValueError(
1120
+ f"Number of frames in the video must be of the form (k * {self.vae_temporal_compression_ratio} + 1) "
1121
+ f"but got {condition_tensor.size(2)} frames."
1122
+ )
1123
+ conditioning_tensors.append(condition_tensor)
1124
+
1125
+ # 4. Prepare timesteps
1126
+ latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
1127
+ latent_height = height // self.vae_spatial_compression_ratio
1128
+ latent_width = width // self.vae_spatial_compression_ratio
1129
+ if timesteps is None:
1130
+ sigmas = linear_quadratic_schedule(num_inference_steps)
1131
+ timesteps = sigmas * 1000
1132
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1133
+ sigmas = self.scheduler.sigmas
1134
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1135
+
1136
+ latent_sigma = None
1137
+ if denoise_strength < 1:
1138
+ sigmas, timesteps, num_inference_steps = self.get_timesteps(
1139
+ sigmas, timesteps, num_inference_steps, denoise_strength
1140
+ )
1141
+ latent_sigma = sigmas[:1].repeat(batch_size * num_videos_per_prompt)
1142
+
1143
+ self._num_timesteps = len(timesteps)
1144
+
1145
+ # 5. Prepare latent variables
1146
+ num_channels_latents = self.transformer.config.in_channels
1147
+ latents, conditioning_mask, video_coords, extra_conditioning_num_latents = self.prepare_latents(
1148
+ conditioning_tensors,
1149
+ strength,
1150
+ frame_index,
1151
+ batch_size=batch_size * num_videos_per_prompt,
1152
+ num_channels_latents=num_channels_latents,
1153
+ height=height,
1154
+ width=width,
1155
+ num_frames=num_frames,
1156
+ sigma=latent_sigma,
1157
+ latents=latents,
1158
+ generator=generator,
1159
+ device=device,
1160
+ dtype=torch.float32,
1161
+ )
1162
+
1163
+ # 4.5. Process reference video (if provided) and concatenate at the beginning
1164
+ reference_latents = None
1165
+ reference_num_latents = 0
1166
+ if reference_video is not None:
1167
+ # Work with the original tensor format [F, C, H, W]
1168
+ ref_frames = reference_video # [F, C, H, W]
1169
+
1170
+ # Resize maintaining aspect ratio (resize all frames)
1171
+ current_height, current_width = ref_frames.shape[2:]
1172
+ aspect_ratio = current_width / current_height
1173
+ target_aspect_ratio = width / height
1174
+
1175
+ if aspect_ratio > target_aspect_ratio:
1176
+ # Width is relatively larger, resize based on height
1177
+ resize_height = height
1178
+ resize_width = int(resize_height * aspect_ratio)
1179
+ else:
1180
+ # Height is relatively larger, resize based on width
1181
+ resize_width = width
1182
+ resize_height = int(resize_width / aspect_ratio)
1183
+
1184
+ ref_frames = resize(ref_frames, [resize_height, resize_width], antialias=True)
1185
+
1186
+ # Center crop to target dimensions
1187
+ ref_frames = center_crop(ref_frames, [height, width])
1188
+
1189
+ # Convert to VAE input format: [1, C, F, H, W] and proper range [-1, 1]
1190
+ reference_tensor = ref_frames.unsqueeze(0).permute(0, 2, 1, 3, 4) # [1, F, C, H, W] -> [1, C, F, H, W]
1191
+ reference_tensor = reference_tensor * 2.0 - 1.0 # [0, 1] -> [-1, 1]
1192
+
1193
+ # Trim reference video to proper frame count for temporal compression
1194
+ ref_num_frames_input = reference_tensor.size(2)
1195
+ ref_num_frames_output = self.trim_conditioning_sequence(0, ref_num_frames_input, num_frames)
1196
+ reference_tensor = reference_tensor[:, :, :ref_num_frames_output]
1197
+ reference_tensor = reference_tensor.to(device, dtype=vae_dtype)
1198
+
1199
+ # Ensure proper frame count for VAE temporal compression
1200
+ if reference_tensor.size(2) % self.vae_temporal_compression_ratio != 1:
1201
+ # Trim to make it compatible with temporal compression
1202
+ ref_frames_to_keep = (
1203
+ (reference_tensor.size(2) - 1) // self.vae_temporal_compression_ratio
1204
+ ) * self.vae_temporal_compression_ratio + 1
1205
+ reference_tensor = reference_tensor[:, :, :ref_frames_to_keep]
1206
+
1207
+ # Expand reference tensor for batch and num_videos_per_prompt
1208
+ reference_tensor = reference_tensor.repeat(batch_size * num_videos_per_prompt, 1, 1, 1, 1)
1209
+
1210
+ # Encode reference video to latents
1211
+ reference_latents = retrieve_latents(self.vae.encode(reference_tensor), generator=generator)
1212
+ reference_latents = self._normalize_latents(
1213
+ reference_latents, self.vae.latents_mean, self.vae.latents_std
1214
+ ).to(device, dtype=torch.float32)
1215
+
1216
+ # Create "clean" coordinates for reference video (as if no frame conditioning applied)
1217
+ ref_latent_frames = reference_latents.size(2)
1218
+ ref_latent_height = reference_latents.size(3)
1219
+ ref_latent_width = reference_latents.size(4)
1220
+
1221
+ reference_video_coords = self._prepare_video_ids(
1222
+ batch_size * num_videos_per_prompt,
1223
+ ref_latent_frames,
1224
+ ref_latent_height,
1225
+ ref_latent_width,
1226
+ patch_size_t=self.transformer_temporal_patch_size,
1227
+ patch_size=self.transformer_spatial_patch_size,
1228
+ device=device,
1229
+ )
1230
+ reference_video_coords = self._scale_video_ids(
1231
+ reference_video_coords,
1232
+ scale_factor=self.vae_spatial_compression_ratio,
1233
+ scale_factor_t=self.vae_temporal_compression_ratio,
1234
+ frame_index=0, # Reference video starts at frame 0
1235
+ device=device,
1236
+ )
1237
+
1238
+ # Pack reference latents
1239
+ reference_latents = self._pack_latents(
1240
+ reference_latents,
1241
+ self.transformer_spatial_patch_size,
1242
+ self.transformer_temporal_patch_size,
1243
+ )
1244
+ reference_num_latents = reference_latents.size(1)
1245
+
1246
+ # Concatenate reference latents at the beginning: [reference_latents, frame_conditions, target_latents]
1247
+ latents = torch.cat([reference_latents, latents], dim=1)
1248
+
1249
+ # Update video coordinates: [reference_coords, existing_coords]
1250
+ reference_video_coords = reference_video_coords.float()
1251
+ video_coords = torch.cat([reference_video_coords, video_coords], dim=2)
1252
+ video_coords[:, 0] = video_coords[:, 0] * (1.0 / frame_rate)
1253
+
1254
+ # Update conditioning mask to include reference (frozen = strength 1.0)
1255
+ if conditioning_mask is not None:
1256
+ reference_conditioning_mask = torch.ones(
1257
+ (batch_size * num_videos_per_prompt, reference_num_latents), device=device, dtype=torch.float32
1258
+ )
1259
+ conditioning_mask = torch.cat([reference_conditioning_mask, conditioning_mask], dim=1)
1260
+ else:
1261
+ # If no frame conditioning, still create mask for reference
1262
+ conditioning_mask = torch.ones(
1263
+ (batch_size * num_videos_per_prompt, reference_num_latents), device=device, dtype=torch.float32
1264
+ )
1265
+ # Add zeros for target latents
1266
+ target_conditioning_mask = torch.zeros(
1267
+ (batch_size * num_videos_per_prompt, latents.size(1) - reference_num_latents),
1268
+ device=device,
1269
+ dtype=torch.float32,
1270
+ )
1271
+ conditioning_mask = torch.cat([conditioning_mask, target_conditioning_mask], dim=1)
1272
+
1273
+ video_coords = video_coords.float()
1274
+ if reference_video is None:
1275
+ video_coords[:, 0] = video_coords[:, 0] * (1.0 / frame_rate)
1276
+
1277
+ init_latents = latents.clone() if is_conditioning_image_or_video or reference_video is not None else None
1278
+
1279
+ if self.do_classifier_free_guidance:
1280
+ video_coords = torch.cat([video_coords, video_coords], dim=0)
1281
+
1282
+ # 6. Denoising loop
1283
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1284
+ for i, t in enumerate(timesteps):
1285
+ if self.interrupt:
1286
+ continue
1287
+
1288
+ self._current_timestep = t
1289
+
1290
+ if image_cond_noise_scale > 0 and init_latents is not None:
1291
+ # Add timestep-dependent noise to the hard-conditioning latents
1292
+ # This helps with motion continuity, especially when conditioned on a single frame
1293
+ latents = self.add_noise_to_image_conditioning_latents(
1294
+ t / 1000.0,
1295
+ init_latents,
1296
+ latents,
1297
+ image_cond_noise_scale,
1298
+ conditioning_mask,
1299
+ generator,
1300
+ )
1301
+
1302
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1303
+ if is_conditioning_image_or_video or reference_video is not None:
1304
+ conditioning_mask_model_input = (
1305
+ torch.cat([conditioning_mask, conditioning_mask])
1306
+ if self.do_classifier_free_guidance
1307
+ else conditioning_mask
1308
+ )
1309
+ latent_model_input = latent_model_input.to(prompt_embeds.dtype)
1310
+
1311
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1312
+ timestep = t.expand(latent_model_input.shape[0]).unsqueeze(-1).float()
1313
+ if is_conditioning_image_or_video or reference_video is not None:
1314
+ timestep = torch.min(timestep, (1 - conditioning_mask_model_input) * 1000.0)
1315
+
1316
+ noise_pred = self.transformer(
1317
+ hidden_states=latent_model_input,
1318
+ encoder_hidden_states=prompt_embeds,
1319
+ timestep=timestep,
1320
+ encoder_attention_mask=prompt_attention_mask,
1321
+ video_coords=video_coords,
1322
+ attention_kwargs=attention_kwargs,
1323
+ return_dict=False,
1324
+ )[0]
1325
+
1326
+ if self.do_classifier_free_guidance:
1327
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1328
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1329
+ timestep, _ = timestep.chunk(2)
1330
+
1331
+ if self.guidance_rescale > 0:
1332
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1333
+ noise_pred = rescale_noise_cfg(
1334
+ noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale
1335
+ )
1336
+
1337
+ denoised_latents = self.scheduler.step(
1338
+ -noise_pred, t, latents, per_token_timesteps=timestep, return_dict=False
1339
+ )[0]
1340
+ if is_conditioning_image_or_video or reference_video is not None:
1341
+ tokens_to_denoise_mask = (t / 1000 - 1e-6 < (1.0 - conditioning_mask)).unsqueeze(-1)
1342
+ latents = torch.where(tokens_to_denoise_mask, denoised_latents, latents)
1343
+ else:
1344
+ latents = denoised_latents
1345
+
1346
+ if callback_on_step_end is not None:
1347
+ callback_kwargs = {}
1348
+ for k in callback_on_step_end_tensor_inputs:
1349
+ callback_kwargs[k] = locals()[k]
1350
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1351
+
1352
+ latents = callback_outputs.pop("latents", latents)
1353
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1354
+
1355
+ # call the callback, if provided
1356
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1357
+ progress_bar.update()
1358
+
1359
+ if XLA_AVAILABLE:
1360
+ xm.mark_step()
1361
+
1362
+ # Handle reference video output processing
1363
+ if reference_video is not None and output_reference_comparison:
1364
+ # Split latents: [reference_latents, frame_conditions, target_latents]
1365
+ reference_latents_out = latents[:, :reference_num_latents]
1366
+ remaining_latents = latents[:, reference_num_latents:]
1367
+
1368
+ # Remove frame conditioning from remaining latents if needed
1369
+ if is_conditioning_image_or_video:
1370
+ target_latents_out = remaining_latents[:, extra_conditioning_num_latents:]
1371
+ else:
1372
+ target_latents_out = remaining_latents
1373
+
1374
+ # Process both reference and target latents
1375
+ videos = []
1376
+ for curr_latents in [reference_latents_out, target_latents_out]:
1377
+ if output_type == "latent":
1378
+ curr_video = curr_latents
1379
+ else:
1380
+ curr_latents = self._unpack_latents(
1381
+ curr_latents,
1382
+ latent_num_frames,
1383
+ latent_height,
1384
+ latent_width,
1385
+ self.transformer_spatial_patch_size,
1386
+ self.transformer_temporal_patch_size,
1387
+ )
1388
+ curr_latents = self._denormalize_latents(
1389
+ curr_latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
1390
+ )
1391
+ curr_latents = curr_latents.to(prompt_embeds.dtype)
1392
+
1393
+ if not self.vae.config.timestep_conditioning:
1394
+ timestep = None
1395
+ else:
1396
+ noise = torch.randn(
1397
+ curr_latents.shape, generator=generator, device=device, dtype=curr_latents.dtype
1398
+ )
1399
+ if not isinstance(decode_timestep, list):
1400
+ decode_timestep = [decode_timestep] * batch_size
1401
+ if decode_noise_scale is None:
1402
+ decode_noise_scale = decode_timestep
1403
+ elif not isinstance(decode_noise_scale, list):
1404
+ decode_noise_scale = [decode_noise_scale] * batch_size
1405
+
1406
+ timestep = torch.tensor(decode_timestep, device=device, dtype=curr_latents.dtype)
1407
+ decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=curr_latents.dtype)[
1408
+ :, None, None, None, None
1409
+ ]
1410
+ curr_latents = (1 - decode_noise_scale) * curr_latents + decode_noise_scale * noise
1411
+
1412
+ curr_video = self.vae.decode(curr_latents, timestep, return_dict=False)[0]
1413
+ curr_video = self.video_processor.postprocess_video(curr_video, output_type=output_type)
1414
+ videos.append(curr_video)
1415
+
1416
+ # Concatenate videos side-by-side (along width dimension for visual output)
1417
+ if output_type == "latent":
1418
+ video = torch.cat(videos, dim=0)
1419
+ # For video tensors, shape is [B, C, F, H, W] or list of PIL images
1420
+ elif isinstance(videos[0], list):
1421
+ # Handle PIL images case - concatenate each frame side by side
1422
+ video = []
1423
+ for batch_idx in range(len(videos[0])):
1424
+ combined_video = []
1425
+ for frame_idx in range(len(videos[0][batch_idx])):
1426
+ ref_frame = videos[0][batch_idx][frame_idx]
1427
+ gen_frame = videos[1][batch_idx][frame_idx]
1428
+ # Create side-by-side comparison
1429
+ import PIL.Image
1430
+
1431
+ if isinstance(ref_frame, PIL.Image.Image) and isinstance(gen_frame, PIL.Image.Image):
1432
+ combined_width = ref_frame.width + gen_frame.width
1433
+ combined_height = max(ref_frame.height, gen_frame.height)
1434
+ combined_frame = PIL.Image.new("RGB", (combined_width, combined_height))
1435
+ combined_frame.paste(ref_frame, (0, 0))
1436
+ combined_frame.paste(gen_frame, (ref_frame.width, 0))
1437
+ combined_video.append(combined_frame)
1438
+ else:
1439
+ combined_video.append(gen_frame) # Fallback to generated only
1440
+ video.append(combined_video)
1441
+ else:
1442
+ # Handle tensor case - concatenate along width dimension (dim=4)
1443
+ video = torch.cat(videos, dim=4)
1444
+ else:
1445
+ # Regular processing - just remove conditioning parts and output generated video
1446
+ if reference_video is not None:
1447
+ # Remove reference latents
1448
+ latents = latents[:, reference_num_latents:]
1449
+
1450
+ if is_conditioning_image_or_video:
1451
+ latents = latents[:, extra_conditioning_num_latents:]
1452
+
1453
+ latents = self._unpack_latents(
1454
+ latents,
1455
+ latent_num_frames,
1456
+ latent_height,
1457
+ latent_width,
1458
+ self.transformer_spatial_patch_size,
1459
+ self.transformer_temporal_patch_size,
1460
+ )
1461
+
1462
+ if output_type == "latent":
1463
+ video = latents
1464
+ else:
1465
+ latents = self._denormalize_latents(
1466
+ latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
1467
+ )
1468
+ latents = latents.to(prompt_embeds.dtype)
1469
+
1470
+ if not self.vae.config.timestep_conditioning:
1471
+ timestep = None
1472
+ else:
1473
+ noise = torch.randn(latents.shape, generator=generator, device=device, dtype=latents.dtype)
1474
+ if not isinstance(decode_timestep, list):
1475
+ decode_timestep = [decode_timestep] * batch_size
1476
+ if decode_noise_scale is None:
1477
+ decode_noise_scale = decode_timestep
1478
+ elif not isinstance(decode_noise_scale, list):
1479
+ decode_noise_scale = [decode_noise_scale] * batch_size
1480
+
1481
+ timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype)
1482
+ decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[
1483
+ :, None, None, None, None
1484
+ ]
1485
+ latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise
1486
+
1487
+ video = self.vae.decode(latents, timestep, return_dict=False)[0]
1488
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
1489
+
1490
+ # Offload all models
1491
+ self.maybe_free_model_hooks()
1492
+
1493
+ if not return_dict:
1494
+ return (video,)
1495
+
1496
+ return LTXPipelineOutput(frames=video)