linoyts HF Staff commited on
Commit
949a551
·
verified ·
1 Parent(s): 2f7883b

switch to distilled

Browse files
Files changed (1) hide show
  1. app.py +17 -55
app.py CHANGED
@@ -15,10 +15,13 @@ import mediapipe as mp
15
  from PIL import Image
16
  import cv2
17
 
 
18
  dtype = torch.bfloat16
19
  device = "cuda" if torch.cuda.is_available() else "cpu"
20
 
21
- pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=dtype)
 
 
22
  pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=dtype)
23
  pipeline.to(device)
24
  pipe_upsample.to(device)
@@ -197,12 +200,8 @@ def generate_video(
197
  negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
198
  height=768,
199
  width=1152,
200
- num_inference_steps=30,
201
- guidance_scale=5.0,
202
- guidance_rescale=0.7,
203
- decode_timestep=0.05,
204
- decode_noise_scale=0.025,
205
- image_cond_noise_scale=0.0,
206
  seed=0,
207
  randomize_seed=False,
208
  progress=gr.Progress()
@@ -263,11 +262,11 @@ def generate_video(
263
  height=downscaled_height,
264
  num_frames=num_frames,
265
  num_inference_steps=num_inference_steps,
266
- decode_timestep=decode_timestep,
267
- decode_noise_scale=decode_noise_scale,
268
- image_cond_noise_scale=image_cond_noise_scale,
269
  guidance_scale=guidance_scale,
270
- guidance_rescale=guidance_rescale,
271
  generator=torch.Generator().manual_seed(seed),
272
  output_type="latent",
273
  ).frames
@@ -293,11 +292,11 @@ def generate_video(
293
  denoise_strength=0.4,
294
  num_inference_steps=10,
295
  latents=upscaled_latents,
296
- decode_timestep=decode_timestep,
297
- decode_noise_scale=decode_noise_scale,
298
- image_cond_noise_scale=image_cond_noise_scale,
299
  guidance_scale=guidance_scale,
300
- guidance_rescale=guidance_rescale,
 
 
301
  generator=torch.Generator(device="cuda").manual_seed(seed),
302
  output_type="pil",
303
  ).frames[0]
@@ -392,7 +391,7 @@ with gr.Blocks() as demo:
392
  minimum=10,
393
  maximum=50,
394
  step=1,
395
- value=30
396
  )
397
 
398
  with gr.Row():
@@ -401,43 +400,10 @@ with gr.Blocks() as demo:
401
  minimum=1.0,
402
  maximum=15.0,
403
  step=0.1,
404
- value=5.0
405
- )
406
- guidance_rescale = gr.Slider(
407
- label="Guidance Rescale",
408
- minimum=0.0,
409
- maximum=1.0,
410
- step=0.05,
411
- value=0.7,
412
- visible=False
413
- )
414
-
415
- with gr.Row():
416
- decode_timestep = gr.Slider(
417
- label="Decode Timestep",
418
- minimum=0.0,
419
- maximum=1.0,
420
- step=0.01,
421
- value=0.05,
422
- visible=False
423
- )
424
- decode_noise_scale = gr.Slider(
425
- label="Decode Noise Scale",
426
- minimum=0.0,
427
- maximum=0.1,
428
- step=0.005,
429
- value=0.025,
430
- visible=False
431
  )
 
432
 
433
- image_cond_noise_scale = gr.Slider(
434
- label="Image Condition Noise Scale",
435
- minimum=0.0,
436
- maximum=0.5,
437
- step=0.01,
438
- value=0.0,
439
- visible=False
440
- )
441
 
442
  with gr.Row():
443
  randomize_seed = gr.Checkbox(
@@ -482,10 +448,6 @@ with gr.Blocks() as demo:
482
  width,
483
  num_inference_steps,
484
  guidance_scale,
485
- guidance_rescale,
486
- decode_timestep,
487
- decode_noise_scale,
488
- image_cond_noise_scale,
489
  seed,
490
  randomize_seed
491
  ],
 
15
  from PIL import Image
16
  import cv2
17
 
18
+
19
  dtype = torch.bfloat16
20
  device = "cuda" if torch.cuda.is_available() else "cpu"
21
 
22
+ #pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=dtype)
23
+ pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16)
24
+
25
  pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=dtype)
26
  pipeline.to(device)
27
  pipe_upsample.to(device)
 
200
  negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
201
  height=768,
202
  width=1152,
203
+ num_inference_steps=7,
204
+ guidance_scale=1.0,
 
 
 
 
205
  seed=0,
206
  randomize_seed=False,
207
  progress=gr.Progress()
 
262
  height=downscaled_height,
263
  num_frames=num_frames,
264
  num_inference_steps=num_inference_steps,
265
+ decode_timestep=0.05,
266
+ decode_noise_scale=0.025,
267
+ # image_cond_noise_scale=image_cond_noise_scale,
268
  guidance_scale=guidance_scale,
269
+ # guidance_rescale=guidance_rescale,
270
  generator=torch.Generator().manual_seed(seed),
271
  output_type="latent",
272
  ).frames
 
292
  denoise_strength=0.4,
293
  num_inference_steps=10,
294
  latents=upscaled_latents,
295
+ decode_timestep = 0.05,
 
 
296
  guidance_scale=guidance_scale,
297
+ decode_noise_scale = 0.025,
298
+ image_cond_noise_scale=0.025,
299
+ #guidance_rescale=guidance_rescale,
300
  generator=torch.Generator(device="cuda").manual_seed(seed),
301
  output_type="pil",
302
  ).frames[0]
 
391
  minimum=10,
392
  maximum=50,
393
  step=1,
394
+ value=7
395
  )
396
 
397
  with gr.Row():
 
400
  minimum=1.0,
401
  maximum=15.0,
402
  step=0.1,
403
+ value=1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404
  )
405
+
406
 
 
 
 
 
 
 
 
 
407
 
408
  with gr.Row():
409
  randomize_seed = gr.Checkbox(
 
448
  width,
449
  num_inference_steps,
450
  guidance_scale,
 
 
 
 
451
  seed,
452
  randomize_seed
453
  ],