File size: 5,194 Bytes
c9960cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16e6110
c9960cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16e6110
 
 
c9960cd
 
16e6110
 
c9960cd
 
16e6110
 
 
c9960cd
16e6110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9960cd
16e6110
 
 
c9960cd
 
16e6110
 
 
 
 
 
 
 
 
c9960cd
16e6110
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import torch
import os
import spaces
import uuid

from diffusers import AnimateDiffPipeline, EulerDiscreteScheduler
from diffusers.utils import export_to_video
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
from transformers import CLIPFeatureExtractor

# Constants
bases = {
    "Cartoon": "frankjoshua/toonyou_beta6",
    "Realistic": "emilianJR/epiCRealism", 
    "3d": "Lykon/DreamShaper",
    "Anime": "Yntec/mistoonAnime2"
}
step_loaded = None
base_loaded = "Realistic"
motion_loaded = None

# Ensure model and scheduler are initialized in GPU-enabled function
if not torch.cuda.is_available():
    raise NotImplementedError("No GPU detected!")

device = "cuda"
dtype = torch.float16
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")

@spaces.GPU(duration=30, queue=False)
def generate_image(prompt, base="Realistic", motion="", step=8, resolution="Square", progress=gr.Progress()):
    global step_loaded
    global base_loaded
    global motion_loaded

    print(prompt, base, step, resolution)

    # Set resolution
    if resolution == "Square":
        width, height = 512, 512
    elif resolution == "Horizontal":
        width, height = 1280, 720
    else:
        width, height = 512, 512  # default fallback

    if step_loaded != step:
        repo = "ByteDance/AnimateDiff-Lightning"
        ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
        pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
        step_loaded = step

    if base_loaded != base:
        pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False)
        base_loaded = base

    if motion_loaded != motion:
        pipe.unload_lora_weights()
        if motion != "":
            pipe.load_lora_weights(motion, adapter_name="motion")
            pipe.set_adapters(["motion"], [0.7])
        motion_loaded = motion

    progress((0, step))
    def progress_callback(i, t, z):
        progress((i+1, step))

    output = pipe(
        prompt=prompt,
        guidance_scale=1.2,
        num_inference_steps=step,
        width=width,
        height=height,
        callback=progress_callback,
        callback_steps=1
    )

    name = str(uuid.uuid4()).replace("-", "")
    path = f"/tmp/{name}.mp4"
    export_to_video(output.frames[0], path, fps=10)
    return path

# Gradio Interface
with gr.Blocks(css="style.css") as demo:
    gr.HTML("<h1><center>Textual Imagination : A Text To Video Synthesis</center></h1>")
    
    with gr.Group():
        with gr.Row():
            prompt = gr.Textbox(label='Prompt')
        
        with gr.Row():
            select_base = gr.Dropdown(
                label='Base model',
                choices=["Cartoon", "Realistic", "3d", "Anime"],
                value=base_loaded,
                interactive=True
            )
            select_motion = gr.Dropdown(
                label='Motion',
                choices=[
                    ("Default", ""),
                    ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
                    ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
                    ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
                    ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
                    ("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
                    ("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
                    ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
                    ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
                ],
                value="guoyww/animatediff-motion-lora-zoom-in",
                interactive=True
            )
            select_step = gr.Dropdown(
                label='Inference steps',
                choices=[
                    ('1-Step', 1), 
                    ('2-Step', 2),
                    ('4-Step', 4),
                    ('8-Step', 8),
                ],
                value=4,
                interactive=True
            )
            select_resolution = gr.Dropdown(
                label='Resolution',
                choices=["Square", "Horizontal"],
                value="Square",
                interactive=True
            )
            submit = gr.Button(scale=1, variant='primary')

    video = gr.Video(
        label='AnimateDiff-Lightning',
        autoplay=True,
        height=512,
        width=512,
        elem_id="video_output"
    )

    gr.on(
        triggers=[submit.click, prompt.submit],
        fn=generate_image,
        inputs=[prompt, select_base, select_motion, select_step, select_resolution],
        outputs=[video],
        api_name="instant_video",
        queue=False
    )

demo.queue().launch()