Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
from bs4 import BeautifulSoup | |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification | |
# ---------------- Model Setup ---------------- | |
def load_sentiment_model(): | |
model_id = "LinkLinkWu/Stock_Analysis_Test_Ahamed" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForSequenceClassification.from_pretrained(model_id) | |
return pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |
def load_ner_model(): | |
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER") | |
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER") | |
return pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True) | |
sentiment_pipeline = load_sentiment_model() | |
ner_pipeline = load_ner_model() | |
# ---------------- Helper Functions ---------------- | |
def fetch_news(ticker): | |
try: | |
url = f"https://finviz.com/quote.ashx?t={ticker}" | |
headers = { | |
'User-Agent': 'Mozilla/5.0', | |
'Accept': 'text/html', | |
'Accept-Language': 'en-US,en;q=0.5', | |
'Referer': 'https://finviz.com/', | |
'Connection': 'keep-alive', | |
} | |
response = requests.get(url, headers=headers) | |
if response.status_code != 200: | |
st.error(f"Failed to fetch page for {ticker}: Status code {response.status_code}") | |
return [] | |
soup = BeautifulSoup(response.text, 'html.parser') | |
title = soup.title.text if soup.title else "" | |
if ticker not in title: | |
st.error(f"Page for {ticker} not found or access denied.") | |
return [] | |
news_table = soup.find(id='news-table') | |
if news_table is None: | |
st.error(f"News table not found for {ticker}. The website structure might have changed.") | |
return [] | |
news = [] | |
for row in news_table.findAll('tr')[:50]: | |
a_tag = row.find('a') | |
if a_tag: | |
title = a_tag.get_text() | |
link = a_tag['href'] | |
news.append({'title': title, 'link': link}) | |
return news | |
except Exception as e: | |
st.error(f"Failed to fetch news for {ticker}: {e}") | |
return [] | |
def analyze_sentiment(text): | |
try: | |
result = sentiment_pipeline(text)[0] | |
return "Positive" if result['label'] == 'POSITIVE' else "Negative" | |
except Exception as e: | |
st.error(f"Sentiment analysis failed: {e}") | |
return "Unknown" | |
def extract_org_entities(text): | |
try: | |
entities = ner_pipeline(text) | |
org_entities = [] | |
for ent in entities: | |
if ent["entity_group"] == "ORG": | |
clean_word = ent["word"].replace("##", "").strip() | |
if clean_word.upper() not in org_entities: | |
org_entities.append(clean_word.upper()) | |
if len(org_entities) >= 5: | |
break | |
return org_entities | |
except Exception as e: | |
st.error(f"NER entity extraction failed: {e}") | |
return [] | |