Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,18 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from func import fetch_news, analyze_sentiment, extract_org_entities
|
| 3 |
-
import time
|
| 4 |
|
| 5 |
-
#
|
| 6 |
st.set_page_config(page_title="Stock News Sentiment Analysis", layout="centered")
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
col1, col2 = st.columns([1, 10])
|
| 10 |
with col1:
|
| 11 |
st.image(
|
|
@@ -15,7 +22,7 @@ with col1:
|
|
| 15 |
with col2:
|
| 16 |
st.markdown("<h1 style='margin-bottom: 0;'>Stock News Sentiment Analysis</h1>", unsafe_allow_html=True)
|
| 17 |
|
| 18 |
-
# ----------- Description
|
| 19 |
st.markdown("""
|
| 20 |
<p style='font-size:17px; margin-top: 0.5rem;'>
|
| 21 |
Analyze the latest news sentiment of companies mentioned in your input.
|
|
@@ -28,20 +35,22 @@ st.markdown("""
|
|
| 28 |
</p>
|
| 29 |
""", unsafe_allow_html=True)
|
| 30 |
|
| 31 |
-
# -----------
|
| 32 |
free_text = st.text_area("Enter text mentioning companies:", height=100)
|
| 33 |
-
|
|
|
|
| 34 |
|
| 35 |
if tickers:
|
| 36 |
st.markdown(f"\U0001F50E **Identified Tickers:** `{', '.join(tickers)}`")
|
| 37 |
else:
|
| 38 |
tickers = []
|
| 39 |
|
| 40 |
-
# ----------- Button
|
| 41 |
if st.button("Get News and Sentiment"):
|
| 42 |
if not tickers:
|
| 43 |
st.warning("Please mention at least one recognizable company.")
|
| 44 |
else:
|
|
|
|
| 45 |
progress_bar = st.progress(0)
|
| 46 |
total_stocks = len(tickers)
|
| 47 |
|
|
@@ -52,7 +61,7 @@ if st.button("Get News and Sentiment"):
|
|
| 52 |
if news_list:
|
| 53 |
sentiments = []
|
| 54 |
for news in news_list:
|
| 55 |
-
sentiment = analyze_sentiment(news['title'])
|
| 56 |
sentiments.append(sentiment)
|
| 57 |
|
| 58 |
positive_count = sentiments.count("Positive")
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
# ✅ 必须作为第一个 Streamlit 命令
|
| 4 |
st.set_page_config(page_title="Stock News Sentiment Analysis", layout="centered")
|
| 5 |
|
| 6 |
+
from func import (
|
| 7 |
+
get_sentiment_pipeline,
|
| 8 |
+
get_ner_pipeline,
|
| 9 |
+
fetch_news,
|
| 10 |
+
analyze_sentiment,
|
| 11 |
+
extract_org_entities,
|
| 12 |
+
)
|
| 13 |
+
import time
|
| 14 |
+
|
| 15 |
+
# ----------- Header Section with Logo and Title -----------
|
| 16 |
col1, col2 = st.columns([1, 10])
|
| 17 |
with col1:
|
| 18 |
st.image(
|
|
|
|
| 22 |
with col2:
|
| 23 |
st.markdown("<h1 style='margin-bottom: 0;'>Stock News Sentiment Analysis</h1>", unsafe_allow_html=True)
|
| 24 |
|
| 25 |
+
# ----------- Description -----------
|
| 26 |
st.markdown("""
|
| 27 |
<p style='font-size:17px; margin-top: 0.5rem;'>
|
| 28 |
Analyze the latest news sentiment of companies mentioned in your input.
|
|
|
|
| 35 |
</p>
|
| 36 |
""", unsafe_allow_html=True)
|
| 37 |
|
| 38 |
+
# ----------- Input Area -----------
|
| 39 |
free_text = st.text_area("Enter text mentioning companies:", height=100)
|
| 40 |
+
ner_pipeline = get_ner_pipeline()
|
| 41 |
+
tickers = extract_org_entities(free_text, ner_pipeline)
|
| 42 |
|
| 43 |
if tickers:
|
| 44 |
st.markdown(f"\U0001F50E **Identified Tickers:** `{', '.join(tickers)}`")
|
| 45 |
else:
|
| 46 |
tickers = []
|
| 47 |
|
| 48 |
+
# ----------- Action Button -----------
|
| 49 |
if st.button("Get News and Sentiment"):
|
| 50 |
if not tickers:
|
| 51 |
st.warning("Please mention at least one recognizable company.")
|
| 52 |
else:
|
| 53 |
+
sentiment_pipeline = get_sentiment_pipeline()
|
| 54 |
progress_bar = st.progress(0)
|
| 55 |
total_stocks = len(tickers)
|
| 56 |
|
|
|
|
| 61 |
if news_list:
|
| 62 |
sentiments = []
|
| 63 |
for news in news_list:
|
| 64 |
+
sentiment = analyze_sentiment(news['title'], sentiment_pipeline)
|
| 65 |
sentiments.append(sentiment)
|
| 66 |
|
| 67 |
positive_count = sentiments.count("Positive")
|