Delete app.py
Browse files
app.py
DELETED
@@ -1,77 +0,0 @@
|
|
1 |
-
"""app.py – Streamlit front‑end for EquiPulse
|
2 |
-
Logic tweak: remove possibility of overall "Neutral" (2025‑05‑18).
|
3 |
-
UI unchanged from prior version.
|
4 |
-
|
5 |
-
Changes
|
6 |
-
=======
|
7 |
-
* Overall sentiment now binary – Positive or Negative – based on which
|
8 |
-
ratio is higher (≥50%).
|
9 |
-
* Headline‑level labels already binary via `func.analyze_sentiment`, so
|
10 |
-
neutral will never appear anywhere.
|
11 |
-
|
12 |
-
Run with `streamlit run app.py`.
|
13 |
-
"""
|
14 |
-
|
15 |
-
from __future__ import annotations
|
16 |
-
|
17 |
-
import streamlit as st
|
18 |
-
from func import (
|
19 |
-
analyze_sentiment,
|
20 |
-
fetch_news,
|
21 |
-
get_ner_pipeline,
|
22 |
-
extract_org_entities,
|
23 |
-
)
|
24 |
-
|
25 |
-
# ------------------------------------------------------------
|
26 |
-
# Page title & instructions (original minimalist UI)
|
27 |
-
# ------------------------------------------------------------
|
28 |
-
st.title("📊 EquiPulse – Stock Sentiment Tracker")
|
29 |
-
st.write("Enter company names or tickers (comma‑separated) and click **Analyze**.")
|
30 |
-
|
31 |
-
user_input = st.text_input("Companies / Tickers", placeholder="Apple, AAPL, Tesla, NVDA")
|
32 |
-
|
33 |
-
# Ticker extraction
|
34 |
-
ner_pipe = get_ner_pipeline()
|
35 |
-
extracted = extract_org_entities(user_input, ner_pipe)
|
36 |
-
if extracted:
|
37 |
-
st.info(f"Recognized tickers: {', '.join(extracted)}")
|
38 |
-
|
39 |
-
# ------------------------------------------------------------
|
40 |
-
# Fetch news & sentiment on button click
|
41 |
-
# ------------------------------------------------------------
|
42 |
-
if st.button("Analyze"):
|
43 |
-
if not extracted:
|
44 |
-
st.warning("Please enter at least one valid company or ticker.")
|
45 |
-
st.stop()
|
46 |
-
|
47 |
-
progress = st.progress(0.0)
|
48 |
-
|
49 |
-
for idx, ticker in enumerate(extracted, start=1):
|
50 |
-
st.subheader(f"Results for {ticker}")
|
51 |
-
news_items = fetch_news(ticker)
|
52 |
-
|
53 |
-
if not news_items:
|
54 |
-
st.write("No recent news found.")
|
55 |
-
progress.progress(idx / len(extracted))
|
56 |
-
continue
|
57 |
-
|
58 |
-
# Headline‑level sentiment (binary)
|
59 |
-
sentiments = [analyze_sentiment(item["title"]) for item in news_items]
|
60 |
-
|
61 |
-
pos_cnt = sentiments.count("Positive")
|
62 |
-
neg_cnt = sentiments.count("Negative")
|
63 |
-
total = len(sentiments)
|
64 |
-
|
65 |
-
# Binary overall judgement – whichever ratio is higher
|
66 |
-
overall = "Positive" if pos_cnt >= neg_cnt else "Negative"
|
67 |
-
|
68 |
-
# Display first few headlines
|
69 |
-
for i, item in enumerate(news_items[:5]):
|
70 |
-
st.write(f"{i+1}. {item['title']} — **{sentiments[i]}**")
|
71 |
-
|
72 |
-
st.success(
|
73 |
-
f"Overall Sentiment: {overall} (Pos: {pos_cnt}/{total}, Neg: {neg_cnt}/{total})"
|
74 |
-
)
|
75 |
-
progress.progress(idx / len(extracted))
|
76 |
-
|
77 |
-
progress.empty()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|