Spaces:
Sleeping
Sleeping
Create func.py
Browse files
func.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# func.py ── utilities for Hugging Face Space
|
2 |
+
|
3 |
+
# Step1. Image to Text
|
4 |
+
from typing import Union
|
5 |
+
from pathlib import Path
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
# lazy-load caption model once
|
10 |
+
_captioner = None
|
11 |
+
def _get_captioner():
|
12 |
+
global _captioner
|
13 |
+
if _captioner is None:
|
14 |
+
_captioner = pipeline(
|
15 |
+
"image-to-text",
|
16 |
+
model="Salesforce/blip-image-captioning-large"
|
17 |
+
)
|
18 |
+
return _captioner
|
19 |
+
|
20 |
+
def img2text(img: Union[Image.Image, str, Path]) -> str:
|
21 |
+
"""
|
22 |
+
Return a short English caption for an image.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
img: PIL.Image, local path, or pathlib.Path.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
Caption string.
|
29 |
+
"""
|
30 |
+
# ensure PIL.Image
|
31 |
+
if not isinstance(img, Image.Image):
|
32 |
+
img = Image.open(img)
|
33 |
+
return _get_captioner()(img)[0]["generated_text"]
|
34 |
+
|
35 |
+
# Step2. Text Generation (Based on Caption)
|
36 |
+
import torch
|
37 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
38 |
+
|
39 |
+
_MODEL_NAME = "aspis/gpt2-genre-story-generation"
|
40 |
+
_PROMPT = (
|
41 |
+
"Write a funny and warm children's story (50-100 words) for ages 3-10, "
|
42 |
+
"fully based on this scene: {caption}\nStory:"
|
43 |
+
)
|
44 |
+
|
45 |
+
_tokenizer, _model = None, None
|
46 |
+
def _load_story_model():
|
47 |
+
"""Lazy-load tokenizer / model once."""
|
48 |
+
global _tokenizer, _model
|
49 |
+
if _model is None:
|
50 |
+
_tokenizer = AutoTokenizer.from_pretrained(_MODEL_NAME)
|
51 |
+
_model = AutoModelForCausalLM.from_pretrained(_MODEL_NAME)
|
52 |
+
if torch.cuda.is_available():
|
53 |
+
_model = _model.to("cuda")
|
54 |
+
return _tokenizer, _model
|
55 |
+
|
56 |
+
|
57 |
+
def text2story(caption: str) -> str:
|
58 |
+
"""
|
59 |
+
Generate a 50-100-word children’s story from an image caption.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
caption: Scene description string.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
Story text (≤100 words).
|
66 |
+
"""
|
67 |
+
tok, mdl = _load_story_model()
|
68 |
+
|
69 |
+
prompt = _PROMPT.format(caption=caption)
|
70 |
+
inputs = tok(prompt, return_tensors="pt", add_special_tokens=False)
|
71 |
+
if mdl.device.type == "cuda":
|
72 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
73 |
+
|
74 |
+
gen_ids = mdl.generate(
|
75 |
+
**inputs,
|
76 |
+
max_new_tokens=150,
|
77 |
+
do_sample=True,
|
78 |
+
top_p=0.9,
|
79 |
+
temperature=0.8,
|
80 |
+
pad_token_id=tok.eos_token_id,
|
81 |
+
repetition_penalty=1.1
|
82 |
+
)[0]
|
83 |
+
|
84 |
+
# drop prompt, decode, keep ≤100 words, end at last period
|
85 |
+
story_ids = gen_ids[inputs["input_ids"].shape[-1]:]
|
86 |
+
story = tok.decode(story_ids, skip_special_tokens=True).strip()
|
87 |
+
story = story[: story.rfind(".") + 1] if "." in story else story
|
88 |
+
return " ".join(story.split()[:100])
|
89 |
+
|
90 |
+
# Step3. Text to Audio
|
91 |
+
import numpy as np
|
92 |
+
import textwrap
|
93 |
+
import soundfile as sf
|
94 |
+
from transformers import pipeline
|
95 |
+
|
96 |
+
_TTS_MODEL = "facebook/mms-tts-eng"
|
97 |
+
_tts = None
|
98 |
+
def _get_tts():
|
99 |
+
"""Lazy-load the TTS pipeline once."""
|
100 |
+
global _tts
|
101 |
+
if _tts is None:
|
102 |
+
_tts = pipeline("text-to-speech", model=_TTS_MODEL)
|
103 |
+
return _tts
|
104 |
+
|
105 |
+
|
106 |
+
def story2audio(story: str, wav_path: str = "story.wav") -> str:
|
107 |
+
"""
|
108 |
+
Synthesize speech for a story and save as WAV.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
story: Text returned by `text2story(...)`.
|
112 |
+
wav_path: Output file name.
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
Path to the saved WAV file.
|
116 |
+
"""
|
117 |
+
tts = _get_tts()
|
118 |
+
chunks = textwrap.wrap(story, width=200) # long text → stable chunks
|
119 |
+
audio = np.concatenate([tts(c)["audio"].squeeze()
|
120 |
+
for c in chunks])
|
121 |
+
sf.write(wav_path, audio, tts.model.config.sampling_rate)
|
122 |
+
return wav_path
|