File size: 5,680 Bytes
64fd107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95bff35
 
64fd107
 
95bff35
64fd107
 
 
 
 
 
 
95bff35
 
64fd107
 
 
 
 
 
 
 
 
 
95bff35
64fd107
 
 
 
 
 
 
 
 
 
 
95bff35
 
 
64fd107
 
 
 
 
 
 
 
 
 
 
 
 
95bff35
64fd107
95bff35
64fd107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import streamlit as st
from transformers import pipeline
from PIL import Image
import io, textwrap, numpy as np, soundfile as sf

# ------------------ Streamlit Page Configuration ------------------
st.set_page_config(
    page_title="Picture to Story Magic",  # App title on browser tab
    page_icon="🦄",                       # Fun unicorn icon
    layout="centered"
)

# ------------------ Custom CSS for a Colorful Background ------------------
st.markdown(
    """
    <style>
    body {
        background-color: #FDEBD0;  /* A soft pastel color */
    }
    </style>
    """,
    unsafe_allow_html=True
)

# ------------------ Playful Header for Young Users ------------------
st.markdown(
    """
    <h1 style='text-align: center; color: #ff66cc;'>Picture to Story Magic!</h1>
    <p style='text-align: center; font-size: 24px;'>
      Hi little artist! Upload your picture and let us create a fun story just for you! 🎉
    </p>
    """,
    unsafe_allow_html=True
)

# ------------------ Lazy Model Loading ------------------
def load_models():
    """
    Lazy-load the required pipelines and store them in session state.
    Pipelines:
      1. Captioner: Generates descriptive text from an image using a lighter model.
      2. Storyer: Generates a humorous children's story using aspis/gpt2-genre-story-generation.
      3. TTS: Converts text into audio.
    """
    if "captioner" not in st.session_state:
        st.session_state.captioner = pipeline(
            "image-to-text",
            model="Salesforce/blip-image-captioning-base"
        )
    if "storyer" not in st.session_state:
        st.session_state.storyer = pipeline(
            "text-generation",
            model="aspis/gpt2-genre-story-generation"
        )
    if "tts" not in st.session_state:
        st.session_state.tts = pipeline(
            "text-to-speech",
            model="facebook/mms-tts-eng"
        )

# ------------------ Caching Functions ------------------
@st.cache_data(show_spinner=False)
def get_caption(image_bytes):
    """
    Converts image bytes into a lower resolution image (256x256 maximum)
    and generates a caption.
    """
    image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
    # Resize to speed up processing
    image.thumbnail((256, 256))
    caption = st.session_state.captioner(image)[0]["generated_text"]
    return caption

@st.cache_data(show_spinner=False)
def get_story(caption):
    """
    Generates a humorous and engaging children's story based on the caption.
    Uses a prompt to instruct the model and limits token generation to 80 tokens.
    """
    prompt = (
        f"Write a funny, warm, and imaginative children's story for ages 3-10, 50-100 words, "
        f"in third-person narrative, as if the author is playfully describing the scene in the image: {caption}. "
        "Explicitly mention the exact venue or location (such as a park, school, or home), describe specific characters "
        "(for example, a little girl named Lily or a boy named Jack), and detail the humorous actions they perform. "
        "Ensure the story is playful, engaging, and ends with a complete sentence."
    )
    raw_story = st.session_state.storyer(
        prompt,
        max_new_tokens=80,
        do_sample=True,
        temperature=0.7,
        top_p=0.9,
        return_full_text=False
    )[0]["generated_text"].strip()
    words = raw_story.split()
    return " ".join(words[:100])

@st.cache_data(show_spinner=False)
def get_audio(story):
    """
    Converts the generated story text into audio.
    Splits the text into 300-character chunks to reduce repeated TTS calls,
    concatenates the resulting audio chunks, and returns an in-memory WAV buffer.
    """
    chunks = textwrap.wrap(story, width=300)
    audio_chunks = [st.session_state.tts(chunk)["audio"].squeeze() for chunk in chunks]
    audio = np.concatenate(audio_chunks)
    buffer = io.BytesIO()
    sf.write(buffer, audio, st.session_state.tts.model.config.sampling_rate, format="WAV")
    buffer.seek(0)
    return buffer

# ------------------ Main App Logic ------------------
uploaded_file = st.file_uploader("Choose a Picture...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
    try:
        load_models()  # Make sure models are loaded
        image_bytes = uploaded_file.getvalue()
        # Display the uploaded image
        image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
        st.image(image, caption="Your Amazing Picture!", use_column_width=True)
        st.markdown("<h3 style='text-align: center;'>Ready for your story?</h3>", unsafe_allow_html=True)
        
        if st.button("Story, Please!"):
            with st.spinner("Generating caption..."):
                caption = get_caption(image_bytes)
            st.markdown("<h3 style='text-align: center;'>Caption:</h3>", unsafe_allow_html=True)
            st.write(caption)
            
            with st.spinner("Generating story..."):
                story = get_story(caption)
            st.markdown("<h3 style='text-align: center;'>Your Story:</h3>", unsafe_allow_html=True)
            st.write(story)
            
            with st.spinner("Generating audio..."):
                audio_buffer = get_audio(story)
            st.audio(audio_buffer, format="audio/wav", start_time=0)
            st.markdown(
                "<p style='text-align: center; font-weight: bold;'>Enjoy your magical story! 🎶</p>",
                unsafe_allow_html=True
            )
    except Exception as e:
        st.error("Oops! Something went wrong. Please try a different picture or check the file format!")
        st.error(f"Error details: {e}")