Szeyu's picture
Update app.py
2e8ed85 verified
raw
history blame
6.14 kB
import streamlit as st
from transformers import pipeline
from PIL import Image
import io, textwrap, numpy as np, soundfile as sf
# ------------------ Streamlit Page Configuration ------------------
st.set_page_config(
page_title="Picture to Story Magic", # App title on browser tab
page_icon="🦄", # Fun unicorn icon
layout="centered"
)
# ------------------ Custom CSS for a Colorful Background ------------------
st.markdown(
"""
<style>
body {
background-color: #FDEBD0; /* A soft pastel color */
}
</style>
""",
unsafe_allow_html=True
)
# ------------------ Playful Header for Young Users ------------------
st.markdown(
"""
<h1 style='text-align: center; color: #ff66cc;'>Picture to Story Magic!</h1>
<p style='text-align: center; font-size: 24px;'>
Hi little artist! Upload your picture and let us create a fun story just for you! 🎉
</p>
""",
unsafe_allow_html=True
)
# ------------------ Lazy Model Loading ------------------
def load_models():
"""
Lazy-load the required pipelines and store them in session state.
Pipelines:
1. Captioner: Generates descriptive text from an image using a lighter model.
2. Storyer: Generates a humorous children's story using aspis/gpt2-genre-story-generation.
3. TTS: Converts text into audio.
"""
if "captioner" not in st.session_state:
st.session_state.captioner = pipeline(
"image-to-text",
model="Salesforce/blip-image-captioning-base"
)
if "storyer" not in st.session_state:
st.session_state.storyer = pipeline(
"text-generation",
model="aspis/gpt2-genre-story-generation"
)
if "tts" not in st.session_state:
st.session_state.tts = pipeline(
"text-to-speech",
model="facebook/mms-tts-eng"
)
# ------------------ Caching Functions ------------------
@st.cache_data(show_spinner=False)
def get_caption(image_bytes):
"""
Converts image bytes into a lower resolution image (256x256 maximum)
and generates a caption.
"""
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
# Resize image to 256x256 maximum for faster processing
image.thumbnail((256, 256))
caption = st.session_state.captioner(image)[0]["generated_text"]
return caption
@st.cache_data(show_spinner=False)
def get_story(caption):
"""
Generates a humorous and engaging children's story based on the caption.
Uses a prompt to instruct the model and limits token generation to 80 tokens.
"""
prompt = (
f"Write a funny, warm, and imaginative children's story for ages 3-10, 50-100 words, "
f"{caption}\nStory: in third-person narrative, as if the author is playfully describing the scene in the image."
)
raw_story = st.session_state.storyer(
prompt,
max_new_tokens=80,
do_sample=True,
temperature=0.7,
top_p=0.9,
return_full_text=False
)[0]["generated_text"].strip()
words = raw_story.split()
return " ".join(words[:100])
@st.cache_data(show_spinner=False)
def get_audio(story):
"""
Converts the generated story text into audio.
Splits the text into 300-character chunks to reduce repeated TTS calls.
Checks each chunk, and if no valid audio is produced, creates a brief default silent audio.
"""
chunks = textwrap.wrap(story, width=300)
audio_chunks = []
for chunk in chunks:
try:
output = st.session_state.tts(chunk)
# Some pipelines return a list; if so, use the first element.
if isinstance(output, list):
output = output[0]
if "audio" in output:
# Ensure the audio is a numpy array and squeeze any extra dimensions.
audio_array = np.array(output["audio"]).squeeze()
audio_chunks.append(audio_array)
except Exception as e:
# Skip any chunk that raises an error.
continue
# If no audio was generated, produce 1 second of silence as a fallback.
if not audio_chunks:
sr = st.session_state.tts.model.config.sampling_rate
audio = np.zeros(sr, dtype=np.float32)
else:
audio = np.concatenate(audio_chunks)
buffer = io.BytesIO()
sf.write(buffer, audio, st.session_state.tts.model.config.sampling_rate, format="WAV")
buffer.seek(0)
return buffer
# ------------------ Main App Logic ------------------
uploaded_file = st.file_uploader("Choose a Picture...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
try:
load_models() # Ensure models are loaded
image_bytes = uploaded_file.getvalue()
# Display the uploaded image
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
st.image(image, caption="Your Amazing Picture!", use_column_width=True)
st.markdown("<h3 style='text-align: center;'>Ready for your story?</h3>", unsafe_allow_html=True)
if st.button("Story, Please!"):
with st.spinner("Generating caption..."):
caption = get_caption(image_bytes)
st.markdown("<h3 style='text-align: center;'>Caption:</h3>", unsafe_allow_html=True)
st.write(caption)
with st.spinner("Generating story..."):
story = get_story(caption)
st.markdown("<h3 style='text-align: center;'>Your Story:</h3>", unsafe_allow_html=True)
st.write(story)
with st.spinner("Generating audio..."):
audio_buffer = get_audio(story)
st.audio(audio_buffer, format="audio/wav", start_time=0)
st.markdown(
"<p style='text-align: center; font-weight: bold;'>Enjoy your magical story! 🎶</p>",
unsafe_allow_html=True
)
except Exception as e:
st.error("Oops! Something went wrong. Please try a different picture or check the file format!")
st.error(f"Error details: {e}")