Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
import textwrap
|
@@ -7,67 +12,119 @@ import tempfile
|
|
7 |
import os
|
8 |
from PIL import Image
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
|
|
11 |
@st.cache_resource
|
12 |
-
def
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
pil_image = Image.open(image)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
f"Write a funny, warm children's story for ages 3-10, 50–100 words, "
|
32 |
-
f"in third-person narrative, that describes this scene exactly: {
|
33 |
-
f"mention the exact place or venue within {
|
34 |
)
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
max_new_tokens=150,
|
38 |
-
temperature=0.7,
|
39 |
-
top_p=0.9,
|
40 |
-
no_repeat_ngram_size=2,
|
41 |
return_full_text=False
|
42 |
)[0]["generated_text"].strip()
|
43 |
|
44 |
-
# Trim to
|
45 |
-
|
46 |
-
|
47 |
-
st.write("**Story:**",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
-
|
|
|
52 |
|
53 |
-
|
54 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
|
55 |
-
sf.write(temp_file.name, audio, tts.model.config.sampling_rate)
|
56 |
-
temp_file_path = temp_file.name
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
st.title("Image to Children's Story and Audio")
|
62 |
-
st.write("Upload an image to generate a caption, a children's story, and an audio narration.")
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
if
|
67 |
-
|
68 |
-
if st.button("Generate Story and Audio"):
|
69 |
-
with st.spinner("Generating content..."):
|
70 |
-
caption, story, audio_path = generate_content(uploaded_image)
|
71 |
-
st.audio(audio_path, format="audio/wav")
|
72 |
-
# Clean up temporary file
|
73 |
-
os.remove(audio_path)
|
|
|
1 |
+
"""
|
2 |
+
Streamlit application that generates children's stories from images with audio narration.
|
3 |
+
Uses Hugging Face transformers for image captioning, story generation, and text-to-speech.
|
4 |
+
"""
|
5 |
+
|
6 |
import streamlit as st
|
7 |
from transformers import pipeline
|
8 |
import textwrap
|
|
|
12 |
import os
|
13 |
from PIL import Image
|
14 |
|
15 |
+
# Constants
|
16 |
+
MAX_STORY_WORDS = 100
|
17 |
+
TEXT_CHUNK_WIDTH = 200 # Characters per chunk for text-to-speech processing
|
18 |
+
AUDIO_SAMPLE_RATE = 16000 # 16kHz sampling rate for audio output
|
19 |
+
|
20 |
@st.cache_resource
|
21 |
+
def load_ml_pipelines():
|
22 |
+
"""
|
23 |
+
Load and cache ML models for image captioning, story generation, and text-to-speech.
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
tuple: Three pipeline objects for:
|
27 |
+
- Image-to-text (captioning)
|
28 |
+
- Text generation (story)
|
29 |
+
- Text-to-speech
|
30 |
+
"""
|
31 |
+
caption_pipeline = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
32 |
+
story_pipeline = pipeline("text-generation", model="aspis/gpt2-genre-story-generation")
|
33 |
+
tts_pipeline = pipeline("text-to-speech", model="facebook/mms-tts-eng")
|
34 |
+
|
35 |
+
return caption_pipeline, story_pipeline, tts_pipeline
|
36 |
|
37 |
+
# Load ML pipelines once and cache them
|
38 |
+
image_caption_pipeline, story_gen_pipeline, text_to_speech_pipeline = load_ml_pipelines()
|
39 |
|
40 |
+
def generate_story_content(uploaded_image):
|
41 |
+
"""
|
42 |
+
Process an image to generate caption, story, and audio narration.
|
|
|
43 |
|
44 |
+
Args:
|
45 |
+
uploaded_image (UploadedFile): Streamlit file uploader object
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
tuple: (caption_text, story_text, temp_audio_path)
|
49 |
+
"""
|
50 |
+
# Convert uploaded image to PIL format
|
51 |
+
pil_image = Image.open(uploaded_image)
|
52 |
+
|
53 |
+
# Generate image caption
|
54 |
+
caption_result = image_caption_pipeline(pil_image)[0]
|
55 |
+
caption_text = caption_result["generated_text"]
|
56 |
+
st.write("**Caption:**", caption_text)
|
57 |
|
58 |
+
# Create story generation prompt
|
59 |
+
story_prompt = (
|
60 |
f"Write a funny, warm children's story for ages 3-10, 50–100 words, "
|
61 |
+
f"in third-person narrative, that describes this scene exactly: {caption_text} "
|
62 |
+
f"mention the exact place or venue within {caption_text}"
|
63 |
)
|
64 |
+
|
65 |
+
# Generate story text
|
66 |
+
story_output = story_gen_pipeline(
|
67 |
+
story_prompt,
|
68 |
max_new_tokens=150,
|
69 |
+
temperature=0.7, # Controls randomness (lower = more deterministic)
|
70 |
+
top_p=0.9, # Nucleus sampling probability
|
71 |
+
no_repeat_ngram_size=2, # Prevent repeating word pairs
|
72 |
return_full_text=False
|
73 |
)[0]["generated_text"].strip()
|
74 |
|
75 |
+
# Trim story to maximum allowed words
|
76 |
+
story_words = story_output.split()
|
77 |
+
trimmed_story = " ".join(story_words[:MAX_STORY_WORDS])
|
78 |
+
st.write("**Story:**", trimmed_story)
|
79 |
+
|
80 |
+
# Split story into chunks for text-to-speech processing
|
81 |
+
story_chunks = textwrap.wrap(trimmed_story, width=TEXT_CHUNK_WIDTH)
|
82 |
+
|
83 |
+
# Generate audio for each chunk and concatenate
|
84 |
+
audio_segments = [
|
85 |
+
text_to_speech_pipeline(chunk)["audio"].squeeze()
|
86 |
+
for chunk in story_chunks
|
87 |
+
]
|
88 |
+
concatenated_audio = np.concatenate(audio_segments)
|
89 |
|
90 |
+
# Create temporary audio file
|
91 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
|
92 |
+
sf.write(temp_audio_file.name, concatenated_audio, samplerate=AUDIO_SAMPLE_RATE)
|
93 |
+
temp_audio_path = temp_audio_file.name
|
94 |
|
95 |
+
return caption_text, trimmed_story, temp_audio_path
|
|
|
|
|
|
|
96 |
|
97 |
+
# Streamlit application interface
|
98 |
+
def main():
|
99 |
+
"""Main Streamlit application layout and interaction logic."""
|
100 |
+
st.title("📖 Image to Children's Story with Audio Narration")
|
101 |
+
st.markdown("""
|
102 |
+
Upload an image to generate:
|
103 |
+
1. A descriptive caption
|
104 |
+
2. A children's story (ages 3-10)
|
105 |
+
3. Audio narration of the story
|
106 |
+
""")
|
107 |
|
108 |
+
image_file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
|
|
|
|
|
109 |
|
110 |
+
if image_file is not None:
|
111 |
+
st.image(image_file, caption="Uploaded Image", use_column_width=True)
|
112 |
+
|
113 |
+
if st.button("Generate Story and Audio"):
|
114 |
+
with st.spinner("Creating magical story..."):
|
115 |
+
try:
|
116 |
+
caption, story, audio_path = generate_story_content(image_file)
|
117 |
+
st.success("Here's your generated story!")
|
118 |
+
|
119 |
+
# Display audio player
|
120 |
+
st.audio(audio_path, format="audio/wav")
|
121 |
+
|
122 |
+
# Clean up temporary audio file
|
123 |
+
os.remove(audio_path)
|
124 |
+
except Exception as e:
|
125 |
+
st.error(f"Something went wrong: {str(e)}")
|
126 |
+
if 'audio_path' in locals():
|
127 |
+
os.remove(audio_path)
|
128 |
|
129 |
+
if __name__ == "__main__":
|
130 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|