Update app.py
Browse files
app.py
CHANGED
@@ -1,135 +1,161 @@
|
|
1 |
-
import re
|
2 |
import streamlit as st
|
3 |
-
|
4 |
-
import
|
|
|
|
|
5 |
import numpy as np
|
6 |
-
import
|
7 |
-
import
|
8 |
-
import
|
9 |
-
|
10 |
-
import
|
11 |
-
|
12 |
-
# Initialize pipelines with caching
|
13 |
-
@st.cache_resource
|
14 |
-
def load_pipelines():
|
15 |
-
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
16 |
-
storyer = pipeline("text-generation", model="aspis/gpt2-genre-story-generation")
|
17 |
-
tts = pipeline("text-to-speech", model="facebook/mms-tts-eng")
|
18 |
-
return captioner, storyer, tts
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
4. Removing single-letter words unless allowed (such as 'a' or 'I').
|
29 |
-
"""
|
30 |
-
# Remove URLs starting with http://, https://, or www.
|
31 |
-
no_urls = re.sub(r'\b(?:https?://|www\.)\S+\b', '', raw_story)
|
32 |
-
# Remove domain names without protocol (e.g., erskybooks.com)
|
33 |
-
no_urls = re.sub(r'\b\w+\.(com|net|org|co\.uk|ca\.us|me)\b', '', no_urls)
|
34 |
-
|
35 |
-
# Remove all digits
|
36 |
-
story_without_numbers = re.sub(r'\d+', '', no_urls)
|
37 |
-
|
38 |
-
vowels = set('aeiouAEIOU')
|
39 |
-
|
40 |
-
def is_valid_word(word: str) -> bool:
|
41 |
-
# Allow "a" and "I" for single-letter words
|
42 |
-
if len(word) == 1 and word.lower() not in ['a', 'i']:
|
43 |
-
return False
|
44 |
-
# For words longer than one letter, filter out those that do not contain any vowels
|
45 |
-
if len(word) > 1 and not any(char in vowels for char in word):
|
46 |
-
return False
|
47 |
-
return True
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
f"Make the story magical and exciting."
|
75 |
)
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
max_new_tokens=150,
|
80 |
-
temperature=0.7,
|
81 |
-
top_p=0.9,
|
82 |
-
no_repeat_ngram_size=2,
|
83 |
-
return_full_text=False
|
84 |
-
)[0]["generated_text"].strip()
|
85 |
-
|
86 |
-
story = clean_generated_story(raw)
|
87 |
-
st.write("**📖 Your funny story: 📖**")
|
88 |
-
st.write(story)
|
89 |
-
return story
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
# Streamlit UI
|
117 |
-
st.title("
|
118 |
-
st.markdown("Upload
|
119 |
|
120 |
-
|
|
|
|
|
121 |
|
122 |
-
if
|
123 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
else:
|
125 |
-
st.
|
126 |
-
|
127 |
-
if st.button("✨ Make My Story! ✨"):
|
128 |
-
if uploaded_image is not None:
|
129 |
-
with st.spinner("🔮 Creating your magical story..."):
|
130 |
-
caption, story, audio_path = generate_content(uploaded_image)
|
131 |
-
st.success("🎉 Your story is ready! 🎉")
|
132 |
-
st.audio(audio_path, format="audio/wav")
|
133 |
-
os.remove(audio_path)
|
134 |
-
else:
|
135 |
-
st.warning("Please upload a picture first! 📸")
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from datasets import Dataset
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer, get_linear_schedule_with_warmup
|
6 |
import numpy as np
|
7 |
+
import torch
|
8 |
+
from transformers import pipeline
|
9 |
+
from collections import Counter
|
10 |
+
import time
|
11 |
+
from tqdm import tqdm
|
12 |
+
import evaluate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Function to load and process data
|
15 |
+
def load_and_process_data(news_file, trend_file):
|
16 |
+
news_df = pd.read_csv(news_file)
|
17 |
+
trend_df = pd.read_csv(trend_file)
|
18 |
+
trend_df = trend_df.rename(columns={'Symbol': 'Stock'})
|
19 |
+
news_labeled_df = news_df.merge(trend_df[['Stock', 'Trend']], on='Stock', how='left')
|
20 |
+
news_labeled_df = news_labeled_df[news_labeled_df['Trend'].isin(['Positive', 'Negative'])]
|
21 |
+
label_map = {'Negative': 0, 'Positive': 1}
|
22 |
+
news_labeled_df['label'] = news_labeled_df['Trend'].map(label_map)
|
23 |
+
return news_labeled_df
|
24 |
|
25 |
+
# Function to check class imbalance
|
26 |
+
def check_class_imbalance(df):
|
27 |
+
class_counts = df['label'].value_counts()
|
28 |
+
st.write("**Class Distribution:**", class_counts.to_dict())
|
29 |
+
if class_counts.min() / class_counts.max() < 0.5:
|
30 |
+
st.warning("Warning: Class imbalance detected. Consider balancing techniques.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Function to split data
|
33 |
+
def split_data(df):
|
34 |
+
stocks = df['Stock'].unique()
|
35 |
+
train_val_stocks, test_stocks = train_test_split(stocks, test_size=0.2, random_state=42)
|
36 |
+
train_stocks, val_stocks = train_test_split(train_val_stocks, test_size=0.25, random_state=42)
|
37 |
+
train_df = df[df['Stock'].isin(train_stocks)]
|
38 |
+
val_df = df[df['Stock'].isin(val_stocks)]
|
39 |
+
test_df = df[df['Stock'].isin(test_stocks)]
|
40 |
+
return train_df, val_df, test_df
|
41 |
|
42 |
+
# Function to tokenize datasets
|
43 |
+
def tokenize_datasets(train_df, val_df, test_df, tokenizer):
|
44 |
+
train_dataset = Dataset.from_pandas(train_df[['Headline', 'label']])
|
45 |
+
val_dataset = Dataset.from_pandas(val_df[['Headline', 'label']])
|
46 |
+
test_dataset = Dataset.from_pandas(test_df[['Headline', 'label']])
|
47 |
+
def tokenize_function(examples):
|
48 |
+
return tokenizer(examples['Headline'], padding='max_length', truncation=True, max_length=128)
|
49 |
+
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
50 |
+
tokenized_val = val_dataset.map(tokenize_function, batched=True)
|
51 |
+
tokenized_test = test_dataset.map(tokenize_function, batched=True)
|
52 |
+
return tokenized_train, tokenized_val, tokenized_test
|
53 |
|
54 |
+
# Function to load model with caching
|
55 |
+
@st.cache_resource
|
56 |
+
def load_model():
|
57 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
58 |
+
"yiyanghkust/finbert-tone",
|
59 |
+
num_labels=2,
|
60 |
+
ignore_mismatched_sizes=True
|
|
|
61 |
)
|
62 |
+
for param in model.bert.encoder.layer[:6].parameters():
|
63 |
+
param.requires_grad = False
|
64 |
+
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# Function to train model
|
67 |
+
def train_model(tokenized_train, tokenized_val, model):
|
68 |
+
training_args = TrainingArguments(
|
69 |
+
output_dir="./results",
|
70 |
+
num_train_epochs=5,
|
71 |
+
per_device_train_batch_size=32,
|
72 |
+
per_device_eval_batch_size=32,
|
73 |
+
eval_strategy="epoch",
|
74 |
+
save_strategy="epoch",
|
75 |
+
load_best_model_at_end=True,
|
76 |
+
metric_for_best_model="accuracy",
|
77 |
+
learning_rate=5e-5,
|
78 |
+
weight_decay=0.1,
|
79 |
+
report_to="none",
|
80 |
+
)
|
81 |
+
total_steps = len(tokenized_train) // training_args.per_device_train_batch_size * training_args.num_train_epochs
|
82 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=training_args.learning_rate)
|
83 |
+
trainer = Trainer(
|
84 |
+
model=model,
|
85 |
+
args=training_args,
|
86 |
+
train_dataset=tokenized_train,
|
87 |
+
eval_dataset=tokenized_val,
|
88 |
+
compute_metrics=lambda eval_pred: {"accuracy": evaluate.load("accuracy").compute(predictions=np.argmax(eval_pred.predictions, axis=1), references=eval_pred.label_ids)},
|
89 |
+
optimizers=(optimizer, get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)),
|
90 |
+
)
|
91 |
+
trainer.train()
|
92 |
+
trainer.save_model("./fine_tuned_model")
|
93 |
+
return trainer
|
94 |
|
95 |
+
# Function to evaluate model
|
96 |
+
def evaluate_model(pipe, df, model_name=""):
|
97 |
+
results = []
|
98 |
+
total_start = time.perf_counter()
|
99 |
+
for stock, group in tqdm(df.groupby("Stock")):
|
100 |
+
headlines = group["Headline"].tolist()
|
101 |
+
true_trend = group["Trend"].iloc[0]
|
102 |
+
try:
|
103 |
+
preds = pipe(headlines, truncation=True)
|
104 |
+
except Exception as e:
|
105 |
+
st.error(f"Error for {stock}: {e}")
|
106 |
+
continue
|
107 |
+
labels = [p['label'] for p in preds]
|
108 |
+
count = Counter(labels)
|
109 |
+
num_pos, num_neg = count.get("Positive", 0), count.get("Negative", 0)
|
110 |
+
predicted_trend = "Positive" if num_pos > num_neg else "Negative"
|
111 |
+
match = predicted_trend == true_trend
|
112 |
+
results.append(match)
|
113 |
+
total_runtime = time.perf_counter() - total_start
|
114 |
+
accuracy = sum(results) / len(results) if results else 0
|
115 |
+
st.write(f"**🔍 Evaluation Summary for {model_name}**")
|
116 |
+
st.write(f"✅ Accuracy: {accuracy:.2%}")
|
117 |
+
st.write(f"⏱ Total Runtime: {total_runtime:.2f} seconds")
|
118 |
+
return accuracy
|
119 |
|
120 |
+
# Streamlit UI
|
121 |
+
st.title("Financial Sentiment Analysis with FinBERT")
|
122 |
+
st.markdown("Upload your CSV files to train and evaluate a sentiment analysis model on financial news headlines.")
|
123 |
|
124 |
+
st.header("Upload CSV Files")
|
125 |
+
news_file = st.file_uploader("Upload Train_stock_news.csv", type="csv")
|
126 |
+
trend_file = st.file_uploader("Upload Training_price_comparison.csv", type="csv")
|
127 |
|
128 |
+
if news_file and trend_file:
|
129 |
+
with st.spinner("Processing data..."):
|
130 |
+
df = load_and_process_data(news_file, trend_file)
|
131 |
+
check_class_imbalance(df)
|
132 |
+
train_df, val_df, test_df = split_data(df)
|
133 |
+
st.write(f"**Training stocks:** {len(train_df['Stock'].unique())}")
|
134 |
+
st.write(f"**Validation stocks:** {len(val_df['Stock'].unique())}")
|
135 |
+
st.write(f"**Test stocks:** {len(test_df['Stock'].unique())}")
|
136 |
+
|
137 |
+
tokenizer = AutoTokenizer.from_pretrained("yiyanghkust/finbert-tone")
|
138 |
+
tokenized_train, tokenized_val, tokenized_test = tokenize_datasets(train_df, val_df, test_df, tokenizer)
|
139 |
+
|
140 |
+
model = load_model()
|
141 |
+
|
142 |
+
with st.spinner("Training model..."):
|
143 |
+
trainer = train_model(tokenized_train, tokenized_val, model)
|
144 |
+
|
145 |
+
st.success("Model training completed!")
|
146 |
+
|
147 |
+
# Evaluate original model
|
148 |
+
original_pipe = pipeline("text-classification", model="yiyanghkust/finbert-tone")
|
149 |
+
st.write("Evaluating original model...")
|
150 |
+
original_accuracy = evaluate_model(original_pipe, test_df, model_name="Original Model")
|
151 |
+
|
152 |
+
# Evaluate fine-tuned model
|
153 |
+
fine_tuned_pipe = pipeline("text-classification", model="./fine_tuned_model")
|
154 |
+
st.write("Evaluating fine-tuned model...")
|
155 |
+
fine_tuned_accuracy = evaluate_model(fine_tuned_pipe, test_df, model_name="Fine-tuned Model")
|
156 |
+
|
157 |
+
st.write(f"**Comparison:**")
|
158 |
+
st.write(f"Original Model Accuracy: {original_accuracy:.2%}")
|
159 |
+
st.write(f"Fine-tuned Model Accuracy: {fine_tuned_accuracy:.2%}")
|
160 |
else:
|
161 |
+
st.warning("Please upload both CSV files to proceed.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|