Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import requests
|
|
3 |
from bs4 import BeautifulSoup
|
4 |
from transformers import pipeline
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
6 |
|
7 |
model_id = "LinkLinkWu/Boss_Stock_News_Analysis"
|
8 |
|
@@ -11,9 +12,9 @@ tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
11 |
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
12 |
|
13 |
# Initialize sentiment analysis pipeline
|
14 |
-
sentiment_pipeline = pipeline("sentiment-analysis")
|
15 |
|
16 |
-
# Function to fetch top
|
17 |
def fetch_news(ticker):
|
18 |
try:
|
19 |
url = f"https://finviz.com/quote.ashx?t={ticker}"
|
@@ -22,7 +23,7 @@ def fetch_news(ticker):
|
|
22 |
soup = BeautifulSoup(response.text, 'html.parser')
|
23 |
news_table = soup.find(id='news-table')
|
24 |
news = []
|
25 |
-
for row in news_table.findAll('tr')[:
|
26 |
title = row.a.get_text()
|
27 |
link = row.a['href']
|
28 |
news.append({'title': title, 'link': link})
|
@@ -54,16 +55,37 @@ if st.button("Get News and Sentiment"):
|
|
54 |
if len(tickers) != 5:
|
55 |
st.error("Please enter exactly five stock tickers.")
|
56 |
else:
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
60 |
news_list = fetch_news(ticker)
|
61 |
|
62 |
if news_list:
|
63 |
-
for
|
|
|
|
|
64 |
sentiment = analyze_sentiment(news['title'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
st.markdown(f"{i}. [{news['title']}]({news['link']}) - **{sentiment}**")
|
|
|
|
|
|
|
66 |
else:
|
67 |
-
st.write("No news available for
|
|
|
|
|
|
|
|
|
68 |
else:
|
69 |
st.warning("Please enter stock tickers.")
|
|
|
3 |
from bs4 import BeautifulSoup
|
4 |
from transformers import pipeline
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
+
import time
|
7 |
|
8 |
model_id = "LinkLinkWu/Boss_Stock_News_Analysis"
|
9 |
|
|
|
12 |
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
13 |
|
14 |
# Initialize sentiment analysis pipeline
|
15 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
16 |
|
17 |
+
# Function to fetch top 50 news articles from FinViz
|
18 |
def fetch_news(ticker):
|
19 |
try:
|
20 |
url = f"https://finviz.com/quote.ashx?t={ticker}"
|
|
|
23 |
soup = BeautifulSoup(response.text, 'html.parser')
|
24 |
news_table = soup.find(id='news-table')
|
25 |
news = []
|
26 |
+
for row in news_table.findAll('tr')[:50]: # Fetch up to 50 articles
|
27 |
title = row.a.get_text()
|
28 |
link = row.a['href']
|
29 |
news.append({'title': title, 'link': link})
|
|
|
55 |
if len(tickers) != 5:
|
56 |
st.error("Please enter exactly five stock tickers.")
|
57 |
else:
|
58 |
+
progress_bar = st.progress(0)
|
59 |
+
total_stocks = len(tickers)
|
60 |
+
for idx, ticker in enumerate(tickers):
|
61 |
+
st.subheader(f"Analyzing {ticker}...")
|
62 |
news_list = fetch_news(ticker)
|
63 |
|
64 |
if news_list:
|
65 |
+
# Analyze sentiment for all news articles (up to 50)
|
66 |
+
sentiments = []
|
67 |
+
for news in news_list:
|
68 |
sentiment = analyze_sentiment(news['title'])
|
69 |
+
sentiments.append(sentiment)
|
70 |
+
|
71 |
+
# Determine overall sentiment based on majority
|
72 |
+
positive_count = sentiments.count("Positive")
|
73 |
+
negative_count = sentiments.count("Negative")
|
74 |
+
overall_sentiment = "Positive" if positive_count > negative_count else "Negative"
|
75 |
+
|
76 |
+
# Display top 3 news articles with sentiment
|
77 |
+
st.write(f"**Top 3 News Articles for {ticker}**")
|
78 |
+
for i, news in enumerate(news_list[:3], 1):
|
79 |
+
sentiment = sentiments[i-1]
|
80 |
st.markdown(f"{i}. [{news['title']}]({news['link']}) - **{sentiment}**")
|
81 |
+
|
82 |
+
# Display overall sentiment
|
83 |
+
st.write(f"**Overall Sentiment for {ticker}: {overall_sentiment}**")
|
84 |
else:
|
85 |
+
st.write(f"No news available for {ticker}.")
|
86 |
+
|
87 |
+
# Update progress bar
|
88 |
+
progress_bar.progress((idx + 1) / total_stocks)
|
89 |
+
time.sleep(0.1) # Simulate processing time
|
90 |
else:
|
91 |
st.warning("Please enter stock tickers.")
|