Spaces:
Sleeping
Sleeping
File size: 46,674 Bytes
c163b71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### DistilBERT Model Exploration\n",
"\n",
"In this section, we shift our focus to exploring the DistilBERT model, a lighter and faster version of the original BERT architecture. While DistilBERT aims to retain much of the knowledge and capabilities of BERT, it does so with fewer parameters and reduced computational requirements. This exploration is particularly relevant in scenarios where speed and efficiency are critical, such as real-time applications or resource-constrained environments.\n",
"\n",
"**Model Implementation and Purpose**\n",
"\n",
"Our implementation involves fine-tuning DistilBERT on the same dataset we used for the BERT model, aiming to evaluate its performance in the context of question answering. The goal is to see how well DistilBERT can understand and generate answers based on the provided context, even though it's widely recognized that it may not match BERT's performance in many cases.\n",
"\n",
"**Key Features of the Code**\n",
"\n",
"1. **Data Preparation**: Just like with BERT, we preprocess our data to ensure it's in the right format for DistilBERT. This includes tokenizing the questions and contexts, as well as padding them to ensure uniform input lengths.\n",
"\n",
"2. **Model Training**: We set up the training loop, where DistilBERT is fine-tuned on our dataset. The training process involves adjusting the model's weights based on how well it predicts the answers, optimizing its understanding of the context.\n",
"\n",
"3. **Evaluation & Testing**: Post-training, we evaluate the model using metrics such as ROUGE, BLEU, and F1 scores. These metrics provide insight into how accurately DistilBERT generates answers compared to the reference answers.\n",
"\n",
"4. **Performance Analysis**: After evaluation, we will compare the performance of DistilBERT with that of the BERT model. This analysis will help us understand the trade-offs involved in using a distilled version of BERT, particularly in terms of response accuracy and computational efficiency.\n",
"\n",
"**Conclusion and Future Directions**\n",
"\n",
"It's important to note that we haven't invested extensive time in optimizing DistilBERT for our use case, given the general consensus that it often yields inferior performance compared to BERT. However, this exploration is valuable for understanding the potential benefits of using lighter models in appropriate contexts. Future work may involve further tuning and experimenting with different configurations to maximize DistilBERT's effectiveness, particularly in situations where computational resources are limited. By examining DistilBERT alongside BERT, we gain insights into the versatility and adaptability of transformer-based models for context-based question answering applications.\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
"execution": {
"iopub.execute_input": "2024-10-20T15:42:01.494045Z",
"iopub.status.busy": "2024-10-20T15:42:01.493704Z",
"iopub.status.idle": "2024-10-20T15:42:02.681840Z",
"shell.execute_reply": "2024-10-20T15:42:02.680746Z",
"shell.execute_reply.started": "2024-10-20T15:42:01.494004Z"
}
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"# Import Gaussian filter for smoothing\n",
"from scipy.ndimage import gaussian_filter1d\n",
"import json\n",
"import torch\n",
"from transformers import DistilBertTokenizerFast, DistilBertForQuestionAnswering, AdamW\n",
"from torch.utils.data import DataLoader, Dataset, random_split, default_collate\n",
"from torch.cuda.amp import autocast, GradScaler\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T15:42:22.376215Z",
"iopub.status.busy": "2024-10-20T15:42:22.375839Z",
"iopub.status.idle": "2024-10-20T15:42:33.763837Z",
"shell.execute_reply": "2024-10-20T15:42:33.762508Z",
"shell.execute_reply.started": "2024-10-20T15:42:22.376183Z"
}
},
"outputs": [],
"source": [
"!pip install -q transformers"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"dataset_path = 'train-v1.1.json'"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T15:42:33.766611Z",
"iopub.status.busy": "2024-10-20T15:42:33.765615Z",
"iopub.status.idle": "2024-10-20T15:42:33.923066Z",
"shell.execute_reply": "2024-10-20T15:42:33.922123Z",
"shell.execute_reply.started": "2024-10-20T15:42:33.766562Z"
}
},
"outputs": [],
"source": [
"# Step 1: Initialize the tokenizer\n",
"tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')\n",
"\n",
"# Custom dataset class for question-answering\n",
"class QADataset(Dataset):\n",
" def __init__(self, examples):\n",
" self.examples = examples\n",
" \n",
" def __len__(self):\n",
" return len(self.examples)\n",
" \n",
" def __getitem__(self, idx):\n",
" return self.examples[idx]"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T15:42:33.925160Z",
"iopub.status.busy": "2024-10-20T15:42:33.924484Z",
"iopub.status.idle": "2024-10-20T15:42:33.934652Z",
"shell.execute_reply": "2024-10-20T15:42:33.933588Z",
"shell.execute_reply.started": "2024-10-20T15:42:33.925113Z"
}
},
"outputs": [],
"source": [
"# Step 2: Preprocessing function for the dataset\n",
"def prepare_features(example):\n",
" inputs = tokenizer(\n",
" example['question'],\n",
" example['context'],\n",
" max_length=256, # Reduced sequence length for faster processing\n",
" truncation=True,\n",
" padding=\"max_length\",\n",
" return_tensors=\"pt\",\n",
" return_offsets_mapping=True\n",
" )\n",
"\n",
" if 'answers' not in example or len(example['answers']['answer_start']) == 0:\n",
" return None\n",
"\n",
" start_char = example['answers']['answer_start'][0]\n",
" end_char = start_char + len(example['answers']['text'][0])\n",
" offset_mapping = inputs['offset_mapping'][0]\n",
"\n",
" try:\n",
" start_pos = next(idx for idx, (start, end) in enumerate(offset_mapping) if start <= start_char < end)\n",
" end_pos = next(idx for idx, (start, end) in enumerate(offset_mapping) if start < end_char <= end)\n",
" except StopIteration:\n",
" return None\n",
"\n",
" inputs['start_positions'] = torch.tensor([start_pos])\n",
" inputs['end_positions'] = torch.tensor([end_pos])\n",
" inputs.pop('offset_mapping')\n",
"\n",
" return {\n",
" 'input_ids': inputs['input_ids'].squeeze(),\n",
" 'attention_mask': inputs['attention_mask'].squeeze(),\n",
" 'start_positions': inputs['start_positions'].squeeze(),\n",
" 'end_positions': inputs['end_positions'].squeeze(),\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T15:42:33.936157Z",
"iopub.status.busy": "2024-10-20T15:42:33.935788Z",
"iopub.status.idle": "2024-10-20T15:42:33.947810Z",
"shell.execute_reply": "2024-10-20T15:42:33.946881Z",
"shell.execute_reply.started": "2024-10-20T15:42:33.936123Z"
}
},
"outputs": [],
"source": [
"# Step 3: Load and preprocess the dataset\n",
"def load_dataset(dataset_path):\n",
" with open(dataset_path, 'r') as f:\n",
" dataset = json.load(f)\n",
" examples = []\n",
" for article in dataset['data']:\n",
" for paragraph in article['paragraphs']:\n",
" context = paragraph['context']\n",
" for qa in paragraph['qas']:\n",
" question = qa['question']\n",
" answers = {\n",
" 'answer_start': [ans['answer_start'] for ans in qa['answers']],\n",
" 'text': [ans['text'] for ans in qa['answers']]\n",
" }\n",
" examples.append({\n",
" 'context': context,\n",
" 'question': question,\n",
" 'answers': answers\n",
" })\n",
" return examples\n"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T15:42:34.052073Z",
"iopub.status.busy": "2024-10-20T15:42:34.051810Z",
"iopub.status.idle": "2024-10-20T15:55:50.144298Z",
"shell.execute_reply": "2024-10-20T15:55:50.143437Z",
"shell.execute_reply.started": "2024-10-20T15:42:34.052042Z"
}
},
"outputs": [],
"source": [
"# Step 4: Preprocess the dataset examples for training\n",
" \n",
"dataset_examples = load_dataset(dataset_path)\n",
"encoded_dataset = [prepare_features(example) for example in dataset_examples if prepare_features(example) is not None]\n"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'input_ids': tensor([ 101, 2000, 3183, 2106, 1996, 6261, 2984, 9382, 3711, 1999,\n",
" 8517, 1999, 10223, 26371, 2605, 1029, 102, 6549, 2135, 1010,\n",
" 1996, 2082, 2038, 1037, 3234, 2839, 1012, 10234, 1996, 2364,\n",
" 2311, 1005, 1055, 2751, 8514, 2003, 1037, 3585, 6231, 1997,\n",
" 1996, 6261, 2984, 1012, 3202, 1999, 2392, 1997, 1996, 2364,\n",
" 2311, 1998, 5307, 2009, 1010, 2003, 1037, 6967, 6231, 1997,\n",
" 4828, 2007, 2608, 2039, 14995, 6924, 2007, 1996, 5722, 1000,\n",
" 2310, 3490, 2618, 4748, 2033, 18168, 5267, 1000, 1012, 2279,\n",
" 2000, 1996, 2364, 2311, 2003, 1996, 13546, 1997, 1996, 6730,\n",
" 2540, 1012, 3202, 2369, 1996, 13546, 2003, 1996, 24665, 23052,\n",
" 1010, 1037, 14042, 2173, 1997, 7083, 1998, 9185, 1012, 2009,\n",
" 2003, 1037, 15059, 1997, 1996, 24665, 23052, 2012, 10223, 26371,\n",
" 1010, 2605, 2073, 1996, 6261, 2984, 22353, 2135, 2596, 2000,\n",
" 3002, 16595, 9648, 4674, 2061, 12083, 9711, 2271, 1999, 8517,\n",
" 1012, 2012, 1996, 2203, 1997, 1996, 2364, 3298, 1006, 1998,\n",
" 1999, 1037, 3622, 2240, 2008, 8539, 2083, 1017, 11342, 1998,\n",
" 1996, 2751, 8514, 1007, 1010, 2003, 1037, 3722, 1010, 2715,\n",
" 2962, 6231, 1997, 2984, 1012, 102, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0]),\n",
" 'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),\n",
" 'start_positions': tensor(130),\n",
" 'end_positions': tensor(137)}"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"encoded_dataset[0]"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T15:57:26.018871Z",
"iopub.status.busy": "2024-10-20T15:57:26.018005Z",
"iopub.status.idle": "2024-10-20T15:57:26.022910Z",
"shell.execute_reply": "2024-10-20T15:57:26.021938Z",
"shell.execute_reply.started": "2024-10-20T15:57:26.018829Z"
}
},
"outputs": [],
"source": [
"# Step 5: Create PyTorch dataset\n",
"qa_dataset = QADataset(encoded_dataset)\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T15:57:31.125889Z",
"iopub.status.busy": "2024-10-20T15:57:31.125528Z",
"iopub.status.idle": "2024-10-20T15:57:31.154920Z",
"shell.execute_reply": "2024-10-20T15:57:31.154116Z",
"shell.execute_reply.started": "2024-10-20T15:57:31.125856Z"
}
},
"outputs": [],
"source": [
"# Step 6: Split into training and validation sets\n",
"train_size = int(0.9 * len(qa_dataset))\n",
"val_size = len(qa_dataset) - train_size\n",
"train_dataset, val_dataset = random_split(qa_dataset, [train_size, val_size])\n",
"\n",
"def custom_collate_fn(batch):\n",
" return default_collate([item for item in batch if item is not None])\n",
"\n",
"train_dataloader = DataLoader(train_dataset, batch_size=16, shuffle=True, collate_fn=custom_collate_fn)\n",
"val_dataloader = DataLoader(val_dataset, batch_size=8, collate_fn=custom_collate_fn)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Explanation of DistilBERT Question-Answering Pipeline\n",
"\n",
"In this section, we outline the steps involved in preparing our dataset for fine-tuning the DistilBERT model on a question-answering task. This process is crucial for ensuring that the model receives the properly formatted input necessary for effective learning.\n",
"\n",
"1. **Dataset Path Initialization**:\n",
" We start by defining the path to the SQuAD1.1 dataset, which is a widely used dataset for training question-answering models. This JSON file contains questions, contexts, and corresponding answers that our model will learn from.\n",
"\n",
"2. **Tokenizer Initialization**:\n",
" We initialize the tokenizer for the DistilBERT model. This tokenizer converts text into a format that the model can understand, including input IDs and attention masks. By loading a pre-trained tokenizer, we ensure consistency with the DistilBERT vocabulary.\n",
"\n",
"3. **Custom Dataset Class**:\n",
" A custom dataset class is defined to handle our examples. This class allows us to easily manage the dataset, including determining its length and accessing individual examples based on their index.\n",
"\n",
"4. **Preprocessing Function**:\n",
" The preprocessing function is responsible for tokenizing each example (question and context) and generating the necessary input format for the model. It sets a maximum sequence length, handles padding and truncation, and calculates the start and end positions of answers within the context. This step is critical for training the model to locate answers in the text.\n",
"\n",
"5. **Loading and Preprocessing the Dataset**:\n",
" We load the dataset by reading the JSON file and extracting relevant data into a structured format. Each entry consists of a context, a question, and associated answers. This organization is essential for further processing.\n",
"\n",
"6. **Encoding the Dataset Examples**:\n",
" After loading the dataset examples, we encode each example using the preprocessing function, filtering out any that cannot be processed. This ensures that we retain only valid inputs for training.\n",
"\n",
"7. **Creating the PyTorch Dataset**:\n",
" We create an instance of our custom dataset class, passing in the encoded examples. This structure facilitates working with the dataset in PyTorch, allowing for straightforward data manipulation during training.\n",
"\n",
"8. **Splitting the Dataset**:\n",
" The dataset is split into training and validation sets, typically allocating 90% for training and 10% for validation. This division is crucial for evaluating the model's performance on unseen data during the training process.\n",
"\n",
"9. **Custom Collate Function**:\n",
" We define a custom collate function to handle batches of data, ensuring that only valid items are included in each batch. This prevents potential issues during the training phase.\n",
"\n",
"10. **Creating DataLoaders**:\n",
" Finally, we create `DataLoader` instances for both the training and validation datasets. These loaders facilitate batch processing, allowing us to efficiently feed data into the model in specified batch sizes.\n",
"\n",
"### Summary\n",
"\n",
"This code establishes a comprehensive pipeline for preparing data for fine-tuning the DistilBERT model on a question-answering task. By carefully preprocessing the dataset and structuring it for PyTorch, we set the stage for effective model training and evaluation. As we proceed with the training, we will be able to assess the performance of DistilBERT in understanding context and generating answers based on the provided questions and contexts.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model Training\n",
"\n",
"\n",
"In this section, we implement the training and evaluation process for a DistilBERT model tailored for question answering tasks.\n",
"\n",
"1. **Model Initialization**: We load a pre-trained DistilBERT model, which provides a robust foundation for understanding language, and set up an optimizer to adjust the model's parameters during training.\n",
"\n",
"2. **Device Setup**: We determine whether to use a GPU or CPU for training to maximize efficiency, enabling faster computations.\n",
"\n",
"3. **Mixed Precision Training**: By employing mixed precision, we enhance training speed and reduce memory usage, allowing us to work with larger models or batch sizes.\n",
"\n",
"4. **Training and Validation Functions**: We define functions for training and validating the model. The training function computes the loss and updates the model's weights, while the validation function evaluates model performance on a separate dataset to monitor its accuracy.\n",
"\n",
"5. **Training Loop**: A loop executes the training and validation processes for a specified number of epochs, tracking and printing performance metrics to observe improvements over time.\n",
"\n",
"6. **Model Saving**: After training, we save the trained model and tokenizer to a designated directory for future use.\n",
"\n",
"This structured approach facilitates efficient training and evaluation of the DistilBERT model, ensuring it is well-prepared for real-world question-answering applications.\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T15:57:36.950445Z",
"iopub.status.busy": "2024-10-20T15:57:36.950023Z",
"iopub.status.idle": "2024-10-20T15:57:39.550098Z",
"shell.execute_reply": "2024-10-20T15:57:39.549285Z",
"shell.execute_reply.started": "2024-10-20T15:57:36.950405Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "df9ea53ab3344dea8253eac2d673ff4a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model.safetensors: 0%| | 0.00/268M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of DistilBertForQuestionAnswering were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['qa_outputs.bias', 'qa_outputs.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
"/opt/conda/lib/python3.10/site-packages/transformers/optimization.py:591: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
" warnings.warn(\n"
]
}
],
"source": [
"# Step 7: Initialize the model for Question Answering\n",
"model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased')\n",
"optimizer = AdamW(model.parameters(), lr=3e-5)\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DistilBertForQuestionAnswering(\n",
" (distilbert): DistilBertModel(\n",
" (embeddings): Embeddings(\n",
" (word_embeddings): Embedding(30522, 768, padding_idx=0)\n",
" (position_embeddings): Embedding(512, 768)\n",
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" )\n",
" (transformer): Transformer(\n",
" (layer): ModuleList(\n",
" (0-5): 6 x TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" )\n",
" )\n",
" )\n",
" (qa_outputs): Linear(in_features=768, out_features=2, bias=True)\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
")"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Step 8: Set up the device for training\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"model.to(device)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T16:09:07.905385Z",
"iopub.status.busy": "2024-10-20T16:09:07.904589Z",
"iopub.status.idle": "2024-10-20T16:09:07.985212Z",
"shell.execute_reply": "2024-10-20T16:09:07.984286Z",
"shell.execute_reply.started": "2024-10-20T16:09:07.905341Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_30/590130087.py:6: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.\n",
" scaler = GradScaler()\n"
]
}
],
"source": [
"\n",
"\n",
"# Mixed precision scaler\n",
"scaler = GradScaler()\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T15:57:48.870796Z",
"iopub.status.busy": "2024-10-20T15:57:48.869932Z",
"iopub.status.idle": "2024-10-20T15:57:48.884453Z",
"shell.execute_reply": "2024-10-20T15:57:48.881684Z",
"shell.execute_reply.started": "2024-10-20T15:57:48.870754Z"
}
},
"outputs": [],
"source": [
"# Step 9: Define the training and validation functions with mixed precision\n",
"def train(model, dataloader, optimizer, device, scaler):\n",
" model.train()\n",
" total_loss = 0\n",
" for batch in dataloader:\n",
" input_ids = batch['input_ids'].to(device)\n",
" attention_mask = batch['attention_mask'].to(device)\n",
" start_positions = batch['start_positions'].to(device)\n",
" end_positions = batch['end_positions'].to(device)\n",
"\n",
" optimizer.zero_grad()\n",
"\n",
" # Use autocast for mixed precision\n",
" with autocast():\n",
" outputs = model(input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions)\n",
" loss = outputs.loss\n",
" total_loss += loss.item()\n",
"\n",
" # Scale the loss and backpropagate\n",
" scaler.scale(loss).backward()\n",
" scaler.step(optimizer)\n",
" scaler.update()\n",
"\n",
" return total_loss / len(dataloader)\n",
"\n",
"def validate(model, dataloader, device):\n",
" model.eval()\n",
" total_loss = 0\n",
" correct = 0\n",
" total = 0\n",
" with torch.no_grad():\n",
" for batch in dataloader:\n",
" input_ids = batch['input_ids'].to(device)\n",
" attention_mask = batch['attention_mask'].to(device)\n",
" start_positions = batch['start_positions'].to(device)\n",
" end_positions = batch['end_positions'].to(device)\n",
"\n",
" outputs = model(input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions)\n",
" loss = outputs.loss\n",
" total_loss += loss.item()\n",
"\n",
" # Get the predicted start and end positions\n",
" start_preds = torch.argmax(outputs.start_logits, dim=1)\n",
" end_preds = torch.argmax(outputs.end_logits, dim=1)\n",
"\n",
" # Calculate accuracy: Check if both start and end positions are correct\n",
" correct += ((start_preds == start_positions) & (end_preds == end_positions)).sum().item()\n",
" total += input_ids.size(0)\n",
"\n",
" avg_loss = total_loss / len(dataloader)\n",
" accuracy = correct / total if total > 0 else 0\n",
" return avg_loss, accuracy\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-18T20:24:54.990665Z",
"iopub.status.busy": "2024-10-18T20:24:54.990241Z",
"iopub.status.idle": "2024-10-18T20:59:50.571427Z",
"shell.execute_reply": "2024-10-18T20:59:50.570475Z",
"shell.execute_reply.started": "2024-10-18T20:24:54.990623Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_30/3732227169.py:14: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n",
" with autocast():\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/3, Training Loss: 1.7261, Validation Loss: 1.3148, Validation Accuracy: 0.4825\n",
"Epoch 2/3, Training Loss: 1.1330, Validation Loss: 1.3120, Validation Accuracy: 0.4916\n",
"Epoch 3/3, Training Loss: 0.8496, Validation Loss: 1.3419, Validation Accuracy: 0.4988\n",
"\n",
"Total Average Validation Accuracy over 3 epochs: 0.4910\n"
]
}
],
"source": [
"# Step 10: Training Loop with accuracy printing\n",
"num_epochs = 3 # Reduced number of epochs for faster results\n",
"total_accuracy = 0 # To track cumulative accuracy across epochs\n",
"\n",
"for epoch in range(num_epochs):\n",
" avg_train_loss = train(model, train_dataloader, optimizer, device, scaler)\n",
" avg_val_loss, val_accuracy = validate(model, val_dataloader, device)\n",
" \n",
" # Accumulate total accuracy over all epochs\n",
" total_accuracy += val_accuracy\n",
" \n",
" print(f\"Epoch {epoch+1}/{num_epochs}, Training Loss: {avg_train_loss:.4f}, Validation Loss: {avg_val_loss:.4f}, Validation Accuracy: {val_accuracy:.4f}\")\n",
"\n",
"# Print the cumulative accuracy over all epochs\n",
"avg_total_accuracy = total_accuracy / num_epochs\n",
"print(f\"\\nTotal Average Validation Accuracy over {num_epochs} epochs: {avg_total_accuracy:.4f}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T15:59:38.631362Z",
"iopub.status.busy": "2024-10-20T15:59:38.630998Z",
"iopub.status.idle": "2024-10-20T15:59:41.417489Z",
"shell.execute_reply": "2024-10-20T15:59:41.416356Z",
"shell.execute_reply.started": "2024-10-20T15:59:38.631329Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"('squad-distilbert-trained/DISTILBERT_model/tokenizer_config.json',\n",
" 'squad-distilbert-trained/DISTILBERT_model/special_tokens_map.json',\n",
" 'squad-distilbert-trained/DISTILBERT_model/vocab.txt',\n",
" 'squad-distilbert-trained/DISTILBERT_model/added_tokens.json',\n",
" 'squad-distilbert-trained/DISTILBERT_model/tokenizer.json')"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Define the directory where you want to save the model\n",
"model_save_path = 'DISTILBERT_model'\n",
"\n",
"# Create the directory if it doesn't exist\n",
"if not os.path.exists(model_save_path):\n",
" os.makedirs(model_save_path)\n",
"\n",
"\n",
"# Save the trained model and tokenizer\n",
"model.save_pretrained(model_save_path)\n",
"tokenizer.save_pretrained(model_save_path)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T16:01:01.362751Z",
"iopub.status.busy": "2024-10-20T16:01:01.362320Z",
"iopub.status.idle": "2024-10-20T16:01:16.259581Z",
"shell.execute_reply": "2024-10-20T16:01:16.258628Z",
"shell.execute_reply.started": "2024-10-20T16:01:01.362708Z"
}
},
"outputs": [],
"source": [
"\n",
"# # Compress the model directory into a zip file\n",
"# !zip -r distilbertmodel.zip squad-distilbert-trained/DISTILBERT_model\n",
"\n",
"# # Download the zip file to your local system\n",
"# from IPython.display import FileLink\n",
"\n",
"# # Display a link to download the file\n",
"# FileLink(r'distilbertmodel.zip')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Post Code Summary\n",
"\n",
"In this section, we perform the initialization, training, and validation of the DistilBERT model specifically designed for question answering tasks using the `DistilBertForQuestionAnswering` class from the Hugging Face Transformers library.\n",
"\n",
"1. **Model Initialization**: \n",
" - We load the pre-trained DistilBERT model, which has been fine-tuned on the SQuAD dataset, making it well-suited for extracting answers from a given context based on a specific question. The model is initialized with a learning rate of `3e-5` to ensure stable convergence during training.\n",
"\n",
"2. **Optimizer Setup**: \n",
" - The AdamW optimizer is employed to improve weight updates during training, accounting for weight decay, which helps prevent overfitting.\n",
"\n",
"3. **Device Configuration**: \n",
" - We check for GPU availability and move the model to the appropriate device (GPU or CPU) for faster training. This is critical for handling larger datasets efficiently.\n",
"\n",
"4. **Mixed Precision Training**: \n",
" - To optimize performance and reduce memory usage, we implement mixed precision training using PyTorch's GradScaler and autocast functions. This technique allows the model to use half-precision floating-point numbers where applicable, significantly speeding up training without sacrificing much in terms of model accuracy.\n",
"\n",
"5. **Training Function**: \n",
" - The training function iterates through the training data, calculating the loss for each batch. We use the model’s outputs to compute the loss based on the start and end positions of the answers. The loss is scaled and backpropagated, and the optimizer updates the model weights.\n",
"\n",
"6. **Validation Function**: \n",
" - The validation function assesses the model's performance on a separate validation dataset. It calculates the loss and accuracy by comparing the predicted start and end positions with the true labels. This step helps gauge the model's ability to generalize beyond the training data.\n",
"\n",
"7. **Training Loop**: \n",
" - Over three epochs, we track the average training loss, validation loss, and validation accuracy. The training loss decreases over epochs, indicating that the model is learning; however, validation loss fluctuates slightly, suggesting that the model might not be fully converging and could benefit from additional training or tuning.\n",
"\n",
"8. **Model Saving**: \n",
" - After completing the training process, we save the fine-tuned model and tokenizer to a specified directory (`DISTILBERT_model`). This step ensures that the trained model can be easily loaded for inference or further training without the need to retrain from scratch.\n",
"\n",
"Overall, this implementation showcases a structured approach to fine-tuning a DistilBERT model for question answering tasks, leveraging modern techniques like mixed precision training to enhance performance and efficiency.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Evaluation & Testing\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"tokenizer=DistilBertTokenizerFast.from_pretrained('DISTILBERT_model')\n",
"model = DistilBertForQuestionAnswering.from_pretrained('DISTILBERT_model')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T16:07:34.892291Z",
"iopub.status.busy": "2024-10-20T16:07:34.891437Z",
"iopub.status.idle": "2024-10-20T16:07:34.899630Z",
"shell.execute_reply": "2024-10-20T16:07:34.898495Z",
"shell.execute_reply.started": "2024-10-20T16:07:34.892244Z"
}
},
"outputs": [],
"source": [
"# Step 12: Prediction function\n",
"def predict(context, question):\n",
" inputs = tokenizer(question, context, max_length=256, truncation=True, padding=\"max_length\", return_tensors=\"pt\").to(device)\n",
" model.eval()\n",
" with torch.no_grad():\n",
" outputs = model(**inputs)\n",
" start_scores = outputs.start_logits\n",
" end_scores = outputs.end_logits\n",
"\n",
" start_idx = torch.argmax(start_scores)\n",
" end_idx = torch.argmax(end_scores)\n",
"\n",
" input_ids = inputs['input_ids'].squeeze().tolist()\n",
" answer_tokens = input_ids[start_idx:end_idx + 1]\n",
" answer = tokenizer.decode(answer_tokens)\n",
"\n",
" return answer\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T16:09:12.435863Z",
"iopub.status.busy": "2024-10-20T16:09:12.435005Z",
"iopub.status.idle": "2024-10-20T16:09:26.610097Z",
"shell.execute_reply": "2024-10-20T16:09:26.609139Z",
"shell.execute_reply.started": "2024-10-20T16:09:12.435820Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predicted Answer: new delhi\n"
]
}
],
"source": [
"context = \"India is a country located in South Asia. Its captial is New Delhi.\"\n",
"question = \"What is the capital of India?\"\n",
"\n",
"predicted_answer = predict(context, question)\n",
"print(\"Predicted Answer:\", predicted_answer)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-18T21:00:02.159304Z",
"iopub.status.busy": "2024-10-18T21:00:02.158666Z",
"iopub.status.idle": "2024-10-18T21:00:02.201810Z",
"shell.execute_reply": "2024-10-18T21:00:02.200906Z",
"shell.execute_reply.started": "2024-10-18T21:00:02.159268Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predicted Answer: saint bernadette soubirous\n"
]
}
],
"source": [
"context = \"Architecturally, the school has a Catholic character. Atop the Main Building's gold dome is a golden statue of the Virgin Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the legend \\\"Venite Ad Me Omnes\\\". Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.\"\n",
"question = \"To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France?\"\n",
"\n",
"predicted_answer = predict(context, question)\n",
"print(\"Predicted Answer:\", predicted_answer)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-20T16:11:39.620287Z",
"iopub.status.busy": "2024-10-20T16:11:39.619610Z",
"iopub.status.idle": "2024-10-20T16:11:39.641221Z",
"shell.execute_reply": "2024-10-20T16:11:39.640332Z",
"shell.execute_reply.started": "2024-10-20T16:11:39.620243Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predicted Answer: music has the power to inspire, heal, and entertain\n"
]
}
],
"source": [
"\n",
"context = '''Music is an art form whose medium is sound and silence. It is a universal language that \n",
"can evoke emotions, convey messages, and bring people together. Music has been an \n",
"integral part of human culture for centuries, with various genres and styles emerging \n",
"across the world. From classical to contemporary, music has the power to inspire, heal, \n",
"and entertain.'''\n",
"\n",
"question = \"What is the difference between Music and Harmony?\"\n",
"\n",
"predicted_answer = predict(context, question)\n",
"print(\"Predicted Answer:\", predicted_answer)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
"iopub.execute_input": "2024-10-18T21:00:02.223992Z",
"iopub.status.busy": "2024-10-18T21:00:02.223682Z",
"iopub.status.idle": "2024-10-18T21:00:02.243487Z",
"shell.execute_reply": "2024-10-18T21:00:02.242627Z",
"shell.execute_reply.started": "2024-10-18T21:00:02.223961Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predicted Answer: california\n"
]
}
],
"source": [
"context = \"Pappu is from america. He is from california\"\n",
"question = \"which country is pappu from?\"\n",
"\n",
"predicted_answer = predict(context, question)\n",
"print(\"Predicted Answer:\", predicted_answer)"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predicted Answer: music has the power to inspire, heal, and entertain\n",
"Actual Answer: music is an art form and harmony refers to the combination of sounds.\n",
"BLEU Score: 0.2850\n",
"ROUGE-1 F1 Score: 0.3636\n",
"ROUGE-2 F1 Score: 0.0000\n",
"ROUGE-L F1 Score: 0.1818\n",
"F1 Score: 0.3636\n"
]
}
],
"source": [
"from nltk.translate.bleu_score import sentence_bleu\n",
"from rouge_score import rouge_scorer\n",
"\n",
"# Example inputs\n",
"context = \"\"\"Music is an art form whose medium is sound and silence. It is a universal language that \n",
"can evoke emotions, convey messages, and bring people together. Music has been an \n",
"integral part of human culture for centuries, with various genres and styles emerging \n",
"across the world. From classical to contemporary, music has the power to inspire, heal, \n",
"and entertain.\"\"\"\n",
"\n",
"question = \"What is the difference between Music and Harmony?\"\n",
"\n",
"# Define actual and predicted answers\n",
"actual_answer = \"Music is an art form and harmony refers to the combination of sounds.\"\n",
"predicted_answer = \"music has the power to inspire, heal, and entertain\"\n",
"\n",
"# Normalize answers (lowercase)\n",
"actual_answer = actual_answer.lower().strip()\n",
"predicted_answer = predicted_answer.lower().strip()\n",
"\n",
"# Calculate BLEU score\n",
"bleu_score = sentence_bleu([actual_answer.split()], predicted_answer.split(), weights=(1.0, 0.0, 0.0, 0.0))\n",
"\n",
"# Calculate ROUGE scores\n",
"scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)\n",
"rouge_scores = scorer.score(actual_answer, predicted_answer)\n",
"\n",
"# Calculate F1 score based on ROUGE-1 precision and recall\n",
"precision = rouge_scores['rouge1'].precision\n",
"recall = rouge_scores['rouge1'].recall\n",
"if precision + recall > 0: # Avoid division by zero\n",
" f1_score = 2 * (precision * recall) / (precision + recall)\n",
"else:\n",
" f1_score = 0.0\n",
"\n",
"# Print the results\n",
"print(f\"Predicted Answer: {predicted_answer}\")\n",
"print(f\"Actual Answer: {actual_answer}\")\n",
"print(f\"BLEU Score: {bleu_score:.4f}\")\n",
"print(f\"ROUGE-1 F1 Score: {rouge_scores['rouge1'].fmeasure:.4f}\")\n",
"print(f\"ROUGE-2 F1 Score: {rouge_scores['rouge2'].fmeasure:.4f}\")\n",
"print(f\"ROUGE-L F1 Score: {rouge_scores['rougeL'].fmeasure:.4f}\")\n",
"print(f\"F1 Score: {f1_score:.4f}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Results Summary\n",
"\n",
"**Predicted Answer**: music has the power to inspire, heal, and entertain \n",
"**Actual Answer**: music is an art form and harmony refers to the combination of sounds. \n",
"**BLEU Score**: 0.2850 \n",
"**ROUGE-1 F1 Score**: 0.3636 \n",
"**ROUGE-2 F1 Score**: 0.0000 \n",
"**ROUGE-L F1 Score**: 0.1818 \n",
"**F1 Score**: 0.3636 \n",
"\n",
"These results indicate that DistilBERT is not performing well at the current level of fine-tuning. The low scores suggest it may require more extensive training to improve its ability to generate accurate and relevant answers.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kaggle": {
"accelerator": "nvidiaTeslaT4",
"dataSources": [
{
"datasetId": 5902073,
"sourceId": 9660462,
"sourceType": "datasetVersion"
},
{
"isSourceIdPinned": true,
"modelId": 142964,
"modelInstanceId": 119726,
"sourceId": 141334,
"sourceType": "modelInstanceVersion"
}
],
"dockerImageVersionId": 30787,
"isGpuEnabled": true,
"isInternetEnabled": true,
"language": "python",
"sourceType": "notebook"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|