Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import argparse | |
| import cv2 | |
| import glob | |
| import os | |
| from realesrgan import RealESRGANer | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--input', type=str, default='inputs', help='Input image or folder') | |
| parser.add_argument( | |
| '--model_path', | |
| type=str, | |
| default='experiments/pretrained_models/RealESRGAN_x4plus.pth', | |
| help='Path to the pre-trained model') | |
| parser.add_argument('--output', type=str, default='results', help='Output folder') | |
| parser.add_argument('--netscale', type=int, default=4, help='Upsample scale factor of the network') | |
| parser.add_argument('--outscale', type=float, default=4, help='The final upsampling scale of the image') | |
| parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image') | |
| parser.add_argument('--tile', type=int, default=0, help='Tile size, 0 for no tile during testing') | |
| parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding') | |
| parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border') | |
| parser.add_argument('--half', action='store_true', help='Use half precision during inference') | |
| parser.add_argument( | |
| '--alpha_upsampler', | |
| type=str, | |
| default='realesrgan', | |
| help='The upsampler for the alpha channels. Options: realesrgan | bicubic') | |
| parser.add_argument( | |
| '--ext', | |
| type=str, | |
| default='auto', | |
| help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs') | |
| args = parser.parse_args() | |
| upsampler = RealESRGANer( | |
| scale=args.netscale, | |
| model_path=args.model_path, | |
| tile=args.tile, | |
| tile_pad=args.tile_pad, | |
| pre_pad=args.pre_pad, | |
| half=args.half) | |
| os.makedirs(args.output, exist_ok=True) | |
| if os.path.isfile(args.input): | |
| paths = [args.input] | |
| else: | |
| paths = sorted(glob.glob(os.path.join(args.input, '*'))) | |
| for idx, path in enumerate(paths): | |
| imgname, extension = os.path.splitext(os.path.basename(path)) | |
| print('Testing', idx, imgname) | |
| img = cv2.imread(path, cv2.IMREAD_UNCHANGED) | |
| h, w = img.shape[0:2] | |
| if max(h, w) > 1000 and args.netscale == 4: | |
| import warnings | |
| warnings.warn('The input image is large, try X2 model for better performace.') | |
| if max(h, w) < 500 and args.netscale == 2: | |
| import warnings | |
| warnings.warn('The input image is small, try X4 model for better performace.') | |
| try: | |
| output, img_mode = upsampler.enhance(img, outscale=args.outscale) | |
| except Exception as error: | |
| print('Error', error) | |
| else: | |
| if args.ext == 'auto': | |
| extension = extension[1:] | |
| else: | |
| extension = args.ext | |
| if img_mode == 'RGBA': # RGBA images should be saved in png format | |
| extension = 'png' | |
| save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}') | |
| cv2.imwrite(save_path, output) | |
| if __name__ == '__main__': | |
| main() | |
