CancerSkinTest3 / app.py
LoloSemper's picture
Update app.py
95a8fa7 verified
raw
history blame
5.92 kB
# app.py
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
import base64
import io
from fastai.vision.all import *
import tensorflow as tf
from tensorflow import keras
import zipfile
import os
import traceback
# Cargar modelo TensorFlow ISIC (descomprimir solo una vez)
if not os.path.exists("saved_model"):
with zipfile.ZipFile("saved_model.zip", "r") as zip_ref:
zip_ref.extractall(".")
# Cargar modelo ISIC con TensorFlow
from keras.layers import TFSMLayer
try:
model_isic = TFSMLayer("saved_model", call_endpoint="serving_default")
except Exception as e:
print("🔴 Error al cargar el modelo ISIC con TFSMLayer:", e)
raise
# Cargar modelos fastai
model_malignancy = load_learner("modelo_malignancy.pkl")
model_norm2000 = load_learner("modelo_norm2000.pkl")
# Cargar modelo ViT
from transformers import AutoImageProcessor, AutoModelForImageClassification
feature_extractor = AutoImageProcessor.from_pretrained("nateraw/vit-skin-cancer")
model_vit = AutoModelForImageClassification.from_pretrained("nateraw/vit-skin-cancer")
# Clases y colores
CLASSES = ['akiec', 'bcc', 'bkl', 'df', 'mel', 'nv', 'vasc']
RISK_LEVELS = {
0: {"label": "akiec", "color": "#FF6F61", "weight": 0.9},
1: {"label": "bcc", "color": "#FF8C42", "weight": 0.7},
2: {"label": "bkl", "color": "#FFD166", "weight": 0.3},
3: {"label": "df", "color": "#06D6A0", "weight": 0.1},
4: {"label": "mel", "color": "#EF476F", "weight": 1.0},
5: {"label": "nv", "color": "#118AB2", "weight": 0.2},
6: {"label": "vasc", "color": "#073B4C", "weight": 0.4},
}
# Preprocesado para TensorFlow ISIC
def preprocess_image_isic(pil_image):
image = pil_image.resize((224, 224))
array = np.array(image) / 255.0
return np.expand_dims(array, axis=0)
# Función de análisis (como ya la tienes)
def analizar_lesion_combined(img):
try:
img_fastai = PILImage.create(img)
inputs = feature_extractor(img, return_tensors="pt")
with torch.no_grad():
outputs = model_vit(**inputs)
probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0]
pred_idx_vit = int(np.argmax(probs_vit))
pred_class_vit = CLASSES[pred_idx_vit]
confidence_vit = probs_vit[pred_idx_vit]
pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai)
prob_malignant = float(probs_fast_mal[1])
pred_fast_type, _, probs_fast_type = model_norm2000.predict(img_fastai)
x_isic = preprocess_image_isic(img)
preds_isic_dict = model_isic(x_isic)
print("🔍 Claves de salida de model_isic:", preds_isic_dict.keys())
key = list(preds_isic_dict.keys())[0]
preds_isic = preds_isic_dict[key].numpy()[0]
pred_idx_isic = int(np.argmax(preds_isic))
pred_class_isic = CLASSES[pred_idx_isic]
confidence_isic = preds_isic[pred_idx_isic]
colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)]
fig, ax = plt.subplots(figsize=(8, 3))
ax.bar(CLASSES, probs_vit*100, color=colors_bars)
ax.set_title("Probabilidad ViT por tipo de lesión")
ax.set_ylabel("Probabilidad (%)")
ax.set_xticks(np.arange(len(CLASSES)))
ax.set_xticklabels(CLASSES, rotation=45, ha='right')
ax.grid(axis='y', alpha=0.2)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format="png")
plt.close(fig)
img_bytes = buf.getvalue()
img_b64 = base64.b64encode(img_bytes).decode("utf-8")
html_chart = f'<img src="data:image/png;base64,{img_b64}" style="max-width:100%"/>'
informe = f"""<div style="font-family:sans-serif; max-width:800px; margin:auto">
<h2>🧪 Diagnóstico por 4 modelos de IA</h2>
<table style="border-collapse: collapse; width:100%; font-size:16px">
<tr><th style="text-align:left">🔍 Modelo</th><th>Resultado</th><th>Confianza</th></tr>
<tr><td>🧠 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr>
<tr><td>🧬 Fast.ai (clasificación)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
<tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{"Maligno" if prob_malignant > 0.5 else "Benigno"}</b></td><td>{prob_malignant:.1%}</td></tr>
<tr><td>🔬 ISIC TensorFlow</td><td><b>{pred_class_isic}</b></td><td>{confidence_isic:.1%}</td></tr>
</table><br><b>🩺 Recomendación automática:</b><br>"""
cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
if prob_malignant > 0.7 or cancer_risk_score > 0.6:
informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
elif prob_malignant > 0.4 or cancer_risk_score > 0.4:
informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
elif cancer_risk_score > 0.2:
informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada (2-4 semanas)"
else:
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
informe += "</div>"
return informe, html_chart
except Exception as e:
print("🔴 ERROR en analizar_lesion_combined:")
print(str(e))
traceback.print_exc()
return f"<b>Error interno:</b> {str(e)}", ""
# INTERFAZ
demo = gr.Interface(
fn=analizar_lesion_combined,
inputs=gr.Image(type="pil", label="Sube una imagen de la lesión"),
outputs=[gr.HTML(label="Informe combinado"), gr.HTML(label="Gráfico ViT")],
title="Detector de Lesiones Cutáneas (ViT + Fast.ai + ISIC TensorFlow)",
description="Comparación entre ViT transformer (HAM10000), dos modelos Fast.ai y el modelo ISIC TensorFlow.",
flagging_mode="never"
)
# LANZAMIENTO
if __name__ == "__main__":
demo.launch()