Spaces:
Sleeping
Sleeping
# app.py | |
import gradio as gr | |
import torch | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import base64 | |
import io | |
from fastai.vision.all import * | |
import tensorflow as tf | |
from tensorflow import keras | |
import zipfile | |
import os | |
import traceback | |
# Cargar modelo TensorFlow ISIC (descomprimir solo una vez) | |
if not os.path.exists("saved_model"): | |
with zipfile.ZipFile("saved_model.zip", "r") as zip_ref: | |
zip_ref.extractall(".") | |
# Cargar modelo ISIC con TensorFlow | |
from keras.layers import TFSMLayer | |
try: | |
model_isic = TFSMLayer("saved_model", call_endpoint="serving_default") | |
except Exception as e: | |
print("🔴 Error al cargar el modelo ISIC con TFSMLayer:", e) | |
raise | |
# Cargar modelos fastai | |
model_malignancy = load_learner("modelo_malignancy.pkl") | |
model_norm2000 = load_learner("modelo_norm2000.pkl") | |
# Cargar modelo ViT | |
from transformers import AutoImageProcessor, AutoModelForImageClassification | |
feature_extractor = AutoImageProcessor.from_pretrained("nateraw/vit-skin-cancer") | |
model_vit = AutoModelForImageClassification.from_pretrained("nateraw/vit-skin-cancer") | |
# Clases y colores | |
CLASSES = ['akiec', 'bcc', 'bkl', 'df', 'mel', 'nv', 'vasc'] | |
RISK_LEVELS = { | |
0: {"label": "akiec", "color": "#FF6F61", "weight": 0.9}, | |
1: {"label": "bcc", "color": "#FF8C42", "weight": 0.7}, | |
2: {"label": "bkl", "color": "#FFD166", "weight": 0.3}, | |
3: {"label": "df", "color": "#06D6A0", "weight": 0.1}, | |
4: {"label": "mel", "color": "#EF476F", "weight": 1.0}, | |
5: {"label": "nv", "color": "#118AB2", "weight": 0.2}, | |
6: {"label": "vasc", "color": "#073B4C", "weight": 0.4}, | |
} | |
# Preprocesado para TensorFlow ISIC | |
def preprocess_image_isic(pil_image): | |
image = pil_image.resize((224, 224)) | |
array = np.array(image) / 255.0 | |
return np.expand_dims(array, axis=0) | |
# Función de análisis (como ya la tienes) | |
def analizar_lesion_combined(img): | |
try: | |
img_fastai = PILImage.create(img) | |
inputs = feature_extractor(img, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model_vit(**inputs) | |
probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0] | |
pred_idx_vit = int(np.argmax(probs_vit)) | |
pred_class_vit = CLASSES[pred_idx_vit] | |
confidence_vit = probs_vit[pred_idx_vit] | |
pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai) | |
prob_malignant = float(probs_fast_mal[1]) | |
pred_fast_type, _, probs_fast_type = model_norm2000.predict(img_fastai) | |
x_isic = preprocess_image_isic(img) | |
preds_isic_dict = model_isic(x_isic) | |
print("🔍 Claves de salida de model_isic:", preds_isic_dict.keys()) | |
key = list(preds_isic_dict.keys())[0] | |
preds_isic = preds_isic_dict[key].numpy()[0] | |
pred_idx_isic = int(np.argmax(preds_isic)) | |
pred_class_isic = CLASSES[pred_idx_isic] | |
confidence_isic = preds_isic[pred_idx_isic] | |
colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)] | |
fig, ax = plt.subplots(figsize=(8, 3)) | |
ax.bar(CLASSES, probs_vit*100, color=colors_bars) | |
ax.set_title("Probabilidad ViT por tipo de lesión") | |
ax.set_ylabel("Probabilidad (%)") | |
ax.set_xticks(np.arange(len(CLASSES))) | |
ax.set_xticklabels(CLASSES, rotation=45, ha='right') | |
ax.grid(axis='y', alpha=0.2) | |
plt.tight_layout() | |
buf = io.BytesIO() | |
plt.savefig(buf, format="png") | |
plt.close(fig) | |
img_bytes = buf.getvalue() | |
img_b64 = base64.b64encode(img_bytes).decode("utf-8") | |
html_chart = f'<img src="data:image/png;base64,{img_b64}" style="max-width:100%"/>' | |
informe = f"""<div style="font-family:sans-serif; max-width:800px; margin:auto"> | |
<h2>🧪 Diagnóstico por 4 modelos de IA</h2> | |
<table style="border-collapse: collapse; width:100%; font-size:16px"> | |
<tr><th style="text-align:left">🔍 Modelo</th><th>Resultado</th><th>Confianza</th></tr> | |
<tr><td>🧠 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr> | |
<tr><td>🧬 Fast.ai (clasificación)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr> | |
<tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{"Maligno" if prob_malignant > 0.5 else "Benigno"}</b></td><td>{prob_malignant:.1%}</td></tr> | |
<tr><td>🔬 ISIC TensorFlow</td><td><b>{pred_class_isic}</b></td><td>{confidence_isic:.1%}</td></tr> | |
</table><br><b>🩺 Recomendación automática:</b><br>""" | |
cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7)) | |
if prob_malignant > 0.7 or cancer_risk_score > 0.6: | |
informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica" | |
elif prob_malignant > 0.4 or cancer_risk_score > 0.4: | |
informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días" | |
elif cancer_risk_score > 0.2: | |
informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada (2-4 semanas)" | |
else: | |
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)" | |
informe += "</div>" | |
return informe, html_chart | |
except Exception as e: | |
print("🔴 ERROR en analizar_lesion_combined:") | |
print(str(e)) | |
traceback.print_exc() | |
return f"<b>Error interno:</b> {str(e)}", "" | |
# INTERFAZ | |
demo = gr.Interface( | |
fn=analizar_lesion_combined, | |
inputs=gr.Image(type="pil", label="Sube una imagen de la lesión"), | |
outputs=[gr.HTML(label="Informe combinado"), gr.HTML(label="Gráfico ViT")], | |
title="Detector de Lesiones Cutáneas (ViT + Fast.ai + ISIC TensorFlow)", | |
description="Comparación entre ViT transformer (HAM10000), dos modelos Fast.ai y el modelo ISIC TensorFlow.", | |
flagging_mode="never" | |
) | |
# LANZAMIENTO | |
if __name__ == "__main__": | |
demo.launch() | |