Spaces:
Sleeping
Sleeping
import torch | |
from transformers import ViTImageProcessor, ViTForImageClassification | |
from fastai.learner import load_learner | |
from fastai.vision.core import PILImage | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import gradio as gr | |
import io | |
import base64 | |
from torchvision import transforms | |
from efficientnet_pytorch import EfficientNet | |
# --- Cargar modelo ViT preentrenado fine‑tuned HAM10000 --- | |
TF_MODEL_NAME = "Anwarkh1/Skin_Cancer-Image_Classification" | |
feature_extractor_tf = ViTImageProcessor.from_pretrained(TF_MODEL_NAME) | |
model_tf_vit = ViTForImageClassification.from_pretrained(TF_MODEL_NAME) | |
model_tf_vit.eval() | |
# 🔹 Cargar modelo ViT base | |
MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32" | |
feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME) | |
model_vit = ViTForImageClassification.from_pretrained(MODEL_NAME) | |
model_vit.eval() | |
# 🔹 Cargar modelos Fast.ai locales | |
model_malignancy = load_learner("ada_learn_malben.pkl") | |
model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl") | |
# 🔹 EfficientNet B7 para binario (benigno vs maligno) | |
model_eff = EfficientNet.from_pretrained("efficientnet-b7", num_classes=2) | |
model_eff.eval() | |
eff_transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], | |
[0.229, 0.224, 0.225]) | |
]) | |
# Clases estándar de HAM10000 | |
CLASSES = [ | |
"Queratosis actínica / Bowen", "Carcinoma células basales", | |
"Lesión queratósica benigna", "Dermatofibroma", | |
"Melanoma maligno", "Nevus melanocítico", "Lesión vascular" | |
] | |
RISK_LEVELS = { | |
0: {'level': 'Moderado', 'color': '#ffaa00', 'weight': 0.6}, | |
1: {'level': 'Alto', 'color': '#ff4444', 'weight': 0.8}, | |
2: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}, | |
3: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}, | |
4: {'level': 'Crítico', 'color': '#cc0000', 'weight': 1.0}, | |
5: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}, | |
6: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1} | |
} | |
MALIGNANT_INDICES = [0, 1, 4] # akiec, bcc, melanoma | |
def analizar_lesion_combined(img): | |
img_fastai = PILImage.create(img) | |
# ViT base | |
inputs = feature_extractor(img, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model_vit(**inputs) | |
probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0] | |
idx_vit = int(np.argmax(probs_vit)) | |
class_vit = CLASSES[idx_vit] | |
conf_vit = probs_vit[idx_vit] | |
# Fast.ai modelos | |
_, _, probs_mal = model_malignancy.predict(img_fastai) | |
prob_malign = float(probs_mal[1]) | |
pred_fast_type, _, _ = model_norm2000.predict(img_fastai) | |
# ViT fine‑tuned (último modelo recomendado) | |
inputs_tf = feature_extractor_tf(img, return_tensors="pt") | |
with torch.no_grad(): | |
outputs_tf = model_tf_vit(**inputs_tf) | |
probs_tf = outputs_tf.logits.softmax(dim=-1).cpu().numpy()[0] | |
idx_tf = int(np.argmax(probs_tf)) | |
class_tf_model = CLASSES[idx_tf] | |
conf_tf = probs_tf[idx_tf] | |
mal_tf = "Maligno" if idx_tf in MALIGNANT_INDICES else "Benigno" | |
# EfficientNet B7 | |
img_eff = eff_transform(img).unsqueeze(0) | |
with torch.no_grad(): | |
out_eff = model_eff(img_eff) | |
prob_eff = torch.softmax(out_eff, dim=1)[0, 1].item() | |
eff_result = "Maligno" if prob_eff > 0.5 else "Benigno" | |
# Gráfico ViT base | |
colors = [RISK_LEVELS[i]['color'] for i in range(7)] | |
fig, ax = plt.subplots(figsize=(8, 3)) | |
ax.bar(CLASSES, probs_vit*100, color=colors) | |
ax.set_title("Probabilidad ViT base por tipo de lesión") | |
ax.set_ylabel("Probabilidad (%)") | |
ax.set_xticks(np.arange(len(CLASSES))) | |
ax.set_xticklabels(CLASSES, rotation=45, ha='right') | |
ax.grid(axis='y', alpha=0.2) | |
plt.tight_layout() | |
buf = io.BytesIO() | |
plt.savefig(buf, format="png") | |
plt.close(fig) | |
html_chart = f'<img src="data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" style="max-width:100%"/>' | |
# Generar informe | |
informe = f""" | |
<div style="font-family:sans-serif; max-width:800px; margin:auto"> | |
<h2>🧪 Diagnóstico por múltiples modelos de IA</h2> | |
<table style="width:100%; font-size:16px; border-collapse:collapse"> | |
<tr><th>Modelo</th><th>Resultado</th><th>Confianza</th></tr> | |
<tr><td>🧠 ViT base</td><td><b>{class_vit}</b></td><td>{conf_vit:.1%}</td></tr> | |
<tr><td>🧬 Fast.ai (tipo)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr> | |
<tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{'Maligno' if prob_malign > 0.5 else 'Benigno'}</b></td><td>{prob_malign:.1%}</td></tr> | |
<tr><td>🌟 ViT fined‑tuned (HAM10000)</td><td><b>{mal_tf} ({class_tf_model})</b></td><td>{conf_tf:.1%}</td></tr> | |
<tr><td>🏥 EfficientNet B7 (binario)</td><td><b>{eff_result}</b></td><td>{prob_eff:.1%}</td></tr> | |
</table><br> | |
<b>🩺 Recomendación automática:</b><br> | |
""" | |
# Nivel de riesgo automático | |
risk = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7)) | |
if prob_malign > 0.7 or risk > 0.6 or prob_eff > 0.7: | |
informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica" | |
elif prob_malign > 0.4 or risk > 0.4 or prob_eff > 0.5: | |
informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días" | |
elif risk > 0.2: | |
informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada en 2-4 semanas" | |
else: | |
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)" | |
informe += "</div>" | |
return informe, html_chart | |
demo = gr.Interface( | |
fn=analizar_lesion_combined, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.HTML(label="Informe"), gr.HTML(label="Gráfico ViT base")], | |
title="Detector de Lesiones Cutáneas (ViT + Fast.ai + EfficientNet)", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |