Spaces:
Sleeping
Sleeping
import torch | |
from transformers import ViTImageProcessor, ViTForImageClassification | |
from fastai.learner import load_learner | |
from fastai.vision.core import PILImage | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import gradio as gr | |
import io | |
import base64 | |
import os | |
import zipfile | |
import tensorflow as tf | |
# --- Extraer y cargar modelo TensorFlow desde zip --- | |
zip_path = "saved_model.zip" | |
extract_dir = "saved_model" | |
if not os.path.exists(extract_dir): | |
os.makedirs(extract_dir) | |
with zipfile.ZipFile(zip_path, 'r') as zip_ref: | |
zip_ref.extractall(extract_dir) | |
model_tf = tf.saved_model.load(extract_dir) | |
TF_NUM_CLASSES = 7 # asumimos que son las mismas que CLASSES | |
# Función helper para inferencia TensorFlow | |
def predict_tf(img: Image.Image): | |
try: | |
img_resized = img.resize((224,224)) | |
img_np = np.array(img_resized) / 255.0 | |
if img_np.shape[-1] == 4: | |
img_np = img_np[..., :3] | |
img_tf = tf.convert_to_tensor(img_np, dtype=tf.float32) | |
img_tf = tf.expand_dims(img_tf, axis=0) | |
infer = model_tf.signatures["serving_default"] | |
output = infer(img_tf) | |
pred = list(output.values())[0].numpy()[0] | |
probs = tf.nn.softmax(pred[:TF_NUM_CLASSES]).numpy() | |
return probs | |
except Exception as e: | |
print(f"Error en predict_tf: {e}") | |
return np.zeros(TF_NUM_CLASSES) | |
# --- Cargar modelos --- | |
MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32" | |
feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME) | |
model_vit = ViTForImageClassification.from_pretrained(MODEL_NAME) | |
model_vit.eval() | |
model_malignancy = load_learner("ada_learn_malben.pkl") | |
model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl") | |
CLASSES = [ | |
"Queratosis actínica / Bowen", "Carcinoma células basales", | |
"Lesión queratósica benigna", "Dermatofibroma", | |
"Melanoma maligno", "Nevus melanocítico", "Lesión vascular" | |
] | |
RISK_LEVELS = { | |
0: {'level': 'Moderado', 'color': '#ffaa00', 'weight': 0.6}, | |
1: {'level': 'Alto', 'color': '#ff4444', 'weight': 0.8}, | |
2: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}, | |
3: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}, | |
4: {'level': 'Crítico', 'color': '#cc0000', 'weight': 1.0}, | |
5: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}, | |
6: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1} | |
} | |
MALIGNANT_INDICES = [0, 1, 4] # clases de riesgo alto/crítico | |
def analizar_lesion_combined(img): | |
try: | |
img_fastai = PILImage.create(img) | |
inputs = feature_extractor(img, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model_vit(**inputs) | |
probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0] | |
pred_idx_vit = int(np.argmax(probs_vit)) | |
pred_class_vit = CLASSES[pred_idx_vit] | |
confidence_vit = probs_vit[pred_idx_vit] | |
except Exception as e: | |
pred_class_vit = "Error" | |
confidence_vit = 0.0 | |
probs_vit = np.zeros(len(CLASSES)) | |
try: | |
pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai) | |
prob_malignant = float(probs_fast_mal[1]) | |
except: | |
prob_malignant = 0.0 | |
try: | |
pred_fast_type, _, _ = model_norm2000.predict(img_fastai) | |
except: | |
pred_fast_type = "Error" | |
try: | |
probs_tf = predict_tf(img) | |
pred_idx_tf = int(np.argmax(probs_tf)) | |
confidence_tf = probs_tf[pred_idx_tf] | |
if pred_idx_tf < len(CLASSES): | |
pred_class_tf = "Maligno" if pred_idx_tf in MALIGNANT_INDICES else "Benigno" | |
else: | |
pred_class_tf = f"Desconocido" | |
except: | |
pred_class_tf = "Error" | |
confidence_tf = 0.0 | |
colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)] | |
fig, ax = plt.subplots(figsize=(8, 3)) | |
ax.bar(CLASSES, probs_vit*100, color=colors_bars) | |
ax.set_title("Probabilidad ViT por tipo de lesión") | |
ax.set_ylabel("Probabilidad (%)") | |
ax.set_xticks(np.arange(len(CLASSES))) | |
ax.set_xticklabels(CLASSES, rotation=45, ha='right') | |
ax.grid(axis='y', alpha=0.2) | |
plt.tight_layout() | |
buf = io.BytesIO() | |
plt.savefig(buf, format="png") | |
plt.close(fig) | |
img_b64 = base64.b64encode(buf.getvalue()).decode("utf-8") | |
html_chart = f'<img src="data:image/png;base64,{img_b64}" style="max-width:100%"/>' | |
informe = f""" | |
<div style="font-family:sans-serif; max-width:800px; margin:auto"> | |
<h2>🧪 Diagnóstico por 4 modelos de IA</h2> | |
<table style="border-collapse: collapse; width:100%; font-size:16px"> | |
<tr><th style="text-align:left">🔍 Modelo</th><th>Resultado</th><th>Confianza</th></tr> | |
<tr><td>🧠 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr> | |
<tr><td>🧬 Fast.ai (clasificación)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr> | |
<tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{"Maligno" if prob_malignant > 0.5 else "Benigno"}</b></td><td>{prob_malignant:.1%}</td></tr> | |
<tr><td>🔬 TensorFlow (saved_model)</td><td><b>{pred_class_tf}</b></td><td>{confidence_tf:.1%}</td></tr> | |
</table> | |
<br> | |
<b>🧪 Recomendación automática:</b><br> | |
""" | |
cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7)) | |
if prob_malignant > 0.7 or cancer_risk_score > 0.6: | |
informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica" | |
elif prob_malignant > 0.4 or cancer_risk_score > 0.4: | |
informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días" | |
elif cancer_risk_score > 0.2: | |
informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada (2-4 semanas)" | |
else: | |
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)" | |
informe += "</div>" | |
return informe, html_chart | |
# Interfaz Gradio | |
demo = gr.Interface( | |
fn=analizar_lesion_combined, | |
inputs=gr.Image(type="pil", label="Sube una imagen de la lesión"), | |
outputs=[gr.HTML(label="Informe combinado"), gr.HTML(label="Gráfico ViT")], | |
title="Detector de Lesiones Cutáneas (ViT + Fast.ai + TensorFlow)", | |
description="Comparación entre ViT transformer (HAM10000), dos modelos Fast.ai y un modelo TensorFlow.", | |
flagging_mode="never" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |