Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,21 +24,24 @@ model_tf = tf.saved_model.load(extract_dir)
|
|
24 |
|
25 |
# Función helper para inferencia TensorFlow
|
26 |
def predict_tf(img: Image.Image):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
# 🔹 Cargar modelo ViT desde Hugging Face
|
44 |
MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
|
@@ -67,34 +70,51 @@ RISK_LEVELS = {
|
|
67 |
}
|
68 |
|
69 |
def analizar_lesion_combined(img):
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
# Gráfico ViT
|
100 |
colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)]
|
|
|
24 |
|
25 |
# Función helper para inferencia TensorFlow
|
26 |
def predict_tf(img: Image.Image):
|
27 |
+
try:
|
28 |
+
# Preprocesar imagen para TF: convertir a tensor float32, normalizar, añadir batch
|
29 |
+
img_resized = img.resize((224,224)) # ajusta según modelo
|
30 |
+
img_np = np.array(img_resized) / 255.0
|
31 |
+
if img_np.shape[-1] == 4: # eliminar canal alfa si existe
|
32 |
+
img_np = img_np[..., :3]
|
33 |
+
img_tf = tf.convert_to_tensor(img_np, dtype=tf.float32)
|
34 |
+
img_tf = tf.expand_dims(img_tf, axis=0) # batch dimension
|
35 |
+
|
36 |
+
# Ejecutar modelo (suponiendo firma default)
|
37 |
+
infer = model_tf.signatures["serving_default"]
|
38 |
+
output = infer(img_tf)
|
39 |
+
pred = list(output.values())[0].numpy()[0]
|
40 |
+
probs = tf.nn.softmax(pred).numpy()
|
41 |
+
return probs
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error en predict_tf: {e}")
|
44 |
+
return np.zeros(len(CLASSES))
|
45 |
|
46 |
# 🔹 Cargar modelo ViT desde Hugging Face
|
47 |
MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
|
|
|
70 |
}
|
71 |
|
72 |
def analizar_lesion_combined(img):
|
73 |
+
try:
|
74 |
+
# Convertir imagen para Fastai
|
75 |
+
img_fastai = PILImage.create(img)
|
76 |
+
|
77 |
+
# ViT prediction
|
78 |
+
inputs = feature_extractor(img, return_tensors="pt")
|
79 |
+
with torch.no_grad():
|
80 |
+
outputs = model_vit(**inputs)
|
81 |
+
probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0]
|
82 |
+
pred_idx_vit = int(np.argmax(probs_vit))
|
83 |
+
pred_class_vit = CLASSES[pred_idx_vit]
|
84 |
+
confidence_vit = probs_vit[pred_idx_vit]
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error en ViT prediction: {e}")
|
87 |
+
pred_class_vit = "Error"
|
88 |
+
confidence_vit = 0.0
|
89 |
+
probs_vit = np.zeros(len(CLASSES))
|
90 |
+
|
91 |
+
try:
|
92 |
+
# Fast.ai models
|
93 |
+
pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai)
|
94 |
+
prob_malignant = float(probs_fast_mal[1]) # 1 = maligno
|
95 |
+
except Exception as e:
|
96 |
+
print(f"Error en Fast.ai malignancy: {e}")
|
97 |
+
prob_malignant = 0.0
|
98 |
+
|
99 |
+
try:
|
100 |
+
pred_fast_type, _, probs_fast_type = model_norm2000.predict(img_fastai)
|
101 |
+
except Exception as e:
|
102 |
+
print(f"Error en Fast.ai tipo: {e}")
|
103 |
+
pred_fast_type = "Error"
|
104 |
+
|
105 |
+
try:
|
106 |
+
# TensorFlow model prediction
|
107 |
+
probs_tf = predict_tf(img)
|
108 |
+
pred_idx_tf = int(np.argmax(probs_tf))
|
109 |
+
confidence_tf = probs_tf[pred_idx_tf]
|
110 |
+
if pred_idx_tf < len(CLASSES):
|
111 |
+
pred_class_tf = CLASSES[pred_idx_tf]
|
112 |
+
else:
|
113 |
+
pred_class_tf = f"Clase desconocida (índice {pred_idx_tf})"
|
114 |
+
except Exception as e:
|
115 |
+
print(f"Error en TensorFlow prediction: {e}")
|
116 |
+
pred_class_tf = "Error"
|
117 |
+
confidence_tf = 0.0
|
118 |
|
119 |
# Gráfico ViT
|
120 |
colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)]
|