Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,18 +13,18 @@ import zipfile
|
|
13 |
import os
|
14 |
import traceback
|
15 |
|
16 |
-
#
|
17 |
if not os.path.exists("saved_model"):
|
18 |
with zipfile.ZipFile("saved_model.zip", "r") as zip_ref:
|
19 |
-
zip_ref.extractall("
|
20 |
|
21 |
-
# Cargar modelo ISIC con TensorFlow
|
22 |
from keras.layers import TFSMLayer
|
23 |
|
24 |
try:
|
25 |
-
model_isic = TFSMLayer("saved_model", call_endpoint="serving_default")
|
26 |
except Exception as e:
|
27 |
-
print("
|
28 |
raise
|
29 |
|
30 |
# Cargar modelos fastai
|
@@ -72,7 +72,7 @@ def analizar_lesion_combined(img):
|
|
72 |
|
73 |
x_isic = preprocess_image_isic(img)
|
74 |
preds_isic_dict = model_isic(x_isic)
|
75 |
-
print("
|
76 |
key = list(preds_isic_dict.keys())[0]
|
77 |
preds_isic = preds_isic_dict[key].numpy()[0]
|
78 |
pred_idx_isic = int(np.argmax(preds_isic))
|
@@ -111,7 +111,7 @@ def analizar_lesion_combined(img):
|
|
111 |
elif prob_malignant > 0.4 or cancer_risk_score > 0.4:
|
112 |
informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
|
113 |
elif cancer_risk_score > 0.2:
|
114 |
-
informe += "
|
115 |
else:
|
116 |
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
|
117 |
|
@@ -119,7 +119,7 @@ def analizar_lesion_combined(img):
|
|
119 |
return informe, html_chart
|
120 |
|
121 |
except Exception as e:
|
122 |
-
print("
|
123 |
print(str(e))
|
124 |
traceback.print_exc()
|
125 |
return f"<b>Error interno:</b> {str(e)}", ""
|
|
|
13 |
import os
|
14 |
import traceback
|
15 |
|
16 |
+
# Descomprimir el modelo si no se ha descomprimido aún
|
17 |
if not os.path.exists("saved_model"):
|
18 |
with zipfile.ZipFile("saved_model.zip", "r") as zip_ref:
|
19 |
+
zip_ref.extractall("saved_model")
|
20 |
|
21 |
+
# Cargar modelo ISIC con TensorFlow desde el directorio correcto
|
22 |
from keras.layers import TFSMLayer
|
23 |
|
24 |
try:
|
25 |
+
model_isic = TFSMLayer("saved_model/saved_model", call_endpoint="serving_default")
|
26 |
except Exception as e:
|
27 |
+
print("\U0001F534 Error al cargar el modelo ISIC con TFSMLayer:", e)
|
28 |
raise
|
29 |
|
30 |
# Cargar modelos fastai
|
|
|
72 |
|
73 |
x_isic = preprocess_image_isic(img)
|
74 |
preds_isic_dict = model_isic(x_isic)
|
75 |
+
print("\U0001F50D Claves de salida de model_isic:", preds_isic_dict.keys())
|
76 |
key = list(preds_isic_dict.keys())[0]
|
77 |
preds_isic = preds_isic_dict[key].numpy()[0]
|
78 |
pred_idx_isic = int(np.argmax(preds_isic))
|
|
|
111 |
elif prob_malignant > 0.4 or cancer_risk_score > 0.4:
|
112 |
informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
|
113 |
elif cancer_risk_score > 0.2:
|
114 |
+
informe += "📜 <b>RIESGO MODERADO</b> – Evaluación programada (2-4 semanas)"
|
115 |
else:
|
116 |
informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
|
117 |
|
|
|
119 |
return informe, html_chart
|
120 |
|
121 |
except Exception as e:
|
122 |
+
print("\U0001F534 ERROR en analizar_lesion_combined:")
|
123 |
print(str(e))
|
124 |
traceback.print_exc()
|
125 |
return f"<b>Error interno:</b> {str(e)}", ""
|