LoloSemper commited on
Commit
dcd58f1
·
verified ·
1 Parent(s): 6076aa4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -9
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import torch
2
- from transformers import ViTImageProcessor, ViTForImageClassification, pipeline
3
  from fastai.learner import load_learner
4
  from fastai.vision.core import PILImage
5
  from PIL import Image
@@ -8,21 +8,29 @@ import numpy as np
8
  import gradio as gr
9
  import io
10
  import base64
 
 
 
11
 
12
- # 🔹 Cargar modelo ViT desde Hugging Face (HAM10000)
13
  MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
14
  feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME)
15
  model_vit = ViTForImageClassification.from_pretrained(MODEL_NAME)
16
  model_vit.eval()
17
 
18
- # 🔹 Cargar modelos Fast.ai
19
  model_malignancy = load_learner("ada_learn_malben.pkl")
20
  model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl")
21
 
22
- # 🔹 Cargar modelo ISIC 7 clases
23
- classifier_isic7 = pipeline("image-classification", model="Anwarkh1/Skin_Cancer-Image_Classification")
 
 
 
 
 
24
 
25
- # 🔹 Clases ViT y niveles de riesgo
26
  CLASSES = [
27
  "Queratosis actínica / Bowen", "Carcinoma células basales",
28
  "Lesión queratósica benigna", "Dermatofibroma",
@@ -38,10 +46,20 @@ RISK_LEVELS = {
38
  6: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}
39
  }
40
 
 
 
 
 
 
 
 
 
 
41
  def analizar_lesion_combined(img):
 
42
  img_fastai = PILImage.create(img)
43
 
44
- # 🔹 ViT transformer (HAM10000)
45
  inputs = feature_extractor(img, return_tensors="pt")
46
  with torch.no_grad():
47
  outputs = model_vit(**inputs)
@@ -50,5 +68,75 @@ def analizar_lesion_combined(img):
50
  pred_class_vit = CLASSES[pred_idx_vit]
51
  confidence_vit = probs_vit[pred_idx_vit]
52
 
53
- # 🔹 Fast.ai modelos
54
- pred_fast_malignant, _, pr_
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
+ from transformers import ViTImageProcessor, ViTForImageClassification
3
  from fastai.learner import load_learner
4
  from fastai.vision.core import PILImage
5
  from PIL import Image
 
8
  import gradio as gr
9
  import io
10
  import base64
11
+ import tensorflow as tf
12
+ import zipfile
13
+ import os
14
 
15
+ # 🔹 Cargar modelo ViT desde Hugging Face
16
  MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
17
  feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME)
18
  model_vit = ViTForImageClassification.from_pretrained(MODEL_NAME)
19
  model_vit.eval()
20
 
21
+ # 🔹 Cargar modelos Fast.ai desde archivos locales
22
  model_malignancy = load_learner("ada_learn_malben.pkl")
23
  model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl")
24
 
25
+ # 🔹 Preparar y cargar modelo TensorFlow ISIC
26
+ zip_path = "saved_model.zip"
27
+ extract_dir = "saved_model"
28
+ if not os.path.exists(extract_dir):
29
+ with zipfile.ZipFile(zip_path, 'r') as zip_ref:
30
+ zip_ref.extractall(extract_dir)
31
+ model_isic = tf.keras.models.load_model(extract_dir)
32
 
33
+ # 🔹 Clases y niveles de riesgo
34
  CLASSES = [
35
  "Queratosis actínica / Bowen", "Carcinoma células basales",
36
  "Lesión queratósica benigna", "Dermatofibroma",
 
46
  6: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}
47
  }
48
 
49
+ def preprocess_image_isic(image: Image.Image):
50
+ # Ajustar tamaño y normalización que espera el modelo ISIC
51
+ image = image.resize((224, 224))
52
+ img_array = np.array(image) / 255.0
53
+ if img_array.shape[-1] == 4: # eliminar canal alpha si existe
54
+ img_array = img_array[..., :3]
55
+ img_array = np.expand_dims(img_array, axis=0) # batch dimension
56
+ return img_array
57
+
58
  def analizar_lesion_combined(img):
59
+ # Convertir imagen para Fastai
60
  img_fastai = PILImage.create(img)
61
 
62
+ # ViT prediction
63
  inputs = feature_extractor(img, return_tensors="pt")
64
  with torch.no_grad():
65
  outputs = model_vit(**inputs)
 
68
  pred_class_vit = CLASSES[pred_idx_vit]
69
  confidence_vit = probs_vit[pred_idx_vit]
70
 
71
+ # Fast.ai models
72
+ pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai)
73
+ prob_malignant = float(probs_fast_mal[1]) # índice 1 = maligno
74
+ pred_fast_type, _, probs_fast_type = model_norm2000.predict(img_fastai)
75
+
76
+ # Modelo TensorFlow ISIC
77
+ x_isic = preprocess_image_isic(img)
78
+ preds_isic = model_isic.predict(x_isic)[0] # vector probabilidades
79
+ pred_idx_isic = int(np.argmax(preds_isic))
80
+ pred_class_isic = CLASSES[pred_idx_isic]
81
+ confidence_isic = preds_isic[pred_idx_isic]
82
+
83
+ # Gráfico ViT
84
+ colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)]
85
+ fig, ax = plt.subplots(figsize=(8, 3))
86
+ ax.bar(CLASSES, probs_vit*100, color=colors_bars)
87
+ ax.set_title("Probabilidad ViT por tipo de lesión")
88
+ ax.set_ylabel("Probabilidad (%)")
89
+ ax.set_xticks(np.arange(len(CLASSES)))
90
+ ax.set_xticklabels(CLASSES, rotation=45, ha='right')
91
+ ax.grid(axis='y', alpha=0.2)
92
+ plt.tight_layout()
93
+ buf = io.BytesIO()
94
+ plt.savefig(buf, format="png")
95
+ plt.close(fig)
96
+ img_bytes = buf.getvalue()
97
+ img_b64 = base64.b64encode(img_bytes).decode("utf-8")
98
+ html_chart = f'<img src="data:image/png;base64,{img_b64}" style="max-width:100%"/>'
99
+
100
+ # Informe HTML con los 4 modelos
101
+ informe = f"""
102
+ <div style="font-family:sans-serif; max-width:800px; margin:auto">
103
+ <h2>🧪 Diagnóstico por 4 modelos de IA</h2>
104
+ <table style="border-collapse: collapse; width:100%; font-size:16px">
105
+ <tr><th style="text-align:left">🔍 Modelo</th><th>Resultado</th><th>Confianza</th></tr>
106
+ <tr><td>🧠 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr>
107
+ <tr><td>🧬 Fast.ai (clasificación)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
108
+ <tr><td>⚠️ Fast.ai (malignidad)</td><td><b>{"Maligno" if prob_malignant > 0.5 else "Benigno"}</b></td><td>{prob_malignant:.1%}</td></tr>
109
+ <tr><td>🔬 ISIC TensorFlow</td><td><b>{pred_class_isic}</b></td><td>{confidence_isic:.1%}</td></tr>
110
+ </table>
111
+ <br>
112
+ <b>🩺 Recomendación automática:</b><br>
113
+ """
114
+
115
+ # Recomendación basada en ViT + malignidad
116
+ cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
117
+ if prob_malignant > 0.7 or cancer_risk_score > 0.6:
118
+ informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
119
+ elif prob_malignant > 0.4 or cancer_risk_score > 0.4:
120
+ informe += "⚠️ <b>ALTO RIESGO</b> – Consulta con dermatólogo en 7 días"
121
+ elif cancer_risk_score > 0.2:
122
+ informe += "📋 <b>RIESGO MODERADO</b> – Evaluación programada (2-4 semanas)"
123
+ else:
124
+ informe += "✅ <b>BAJO RIESGO</b> – Seguimiento de rutina (3-6 meses)"
125
+
126
+ informe += "</div>"
127
+
128
+ return informe, html_chart
129
+
130
+ # 🔹 Interfaz Gradio
131
+ demo = gr.Interface(
132
+ fn=analizar_lesion_combined,
133
+ inputs=gr.Image(type="pil", label="Sube una imagen de la lesión"),
134
+ outputs=[gr.HTML(label="Informe combinado"), gr.HTML(label="Gráfico ViT")],
135
+ title="Detector de Lesiones Cutáneas (ViT + Fast.ai + ISIC TensorFlow)",
136
+ description="Comparación entre ViT transformer (HAM10000), dos modelos Fast.ai y el modelo ISIC TensorFlow.",
137
+ flagging_mode="never"
138
+ )
139
+
140
+ if __name__ == "__main__":
141
+ demo.launch()
142
+