Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import torch
|
2 |
from transformers import ViTImageProcessor, ViTForImageClassification
|
|
|
3 |
from fastai.learner import load_learner
|
4 |
from fastai.vision.core import PILImage
|
5 |
from PIL import Image
|
@@ -10,51 +11,28 @@ import io
|
|
10 |
import base64
|
11 |
import os
|
12 |
import zipfile
|
13 |
-
import tensorflow as tf
|
14 |
|
15 |
-
# ---
|
16 |
-
zip_path = "saved_model.zip"
|
17 |
-
extract_dir = "saved_model"
|
18 |
-
if not os.path.exists(extract_dir):
|
19 |
-
os.makedirs(extract_dir)
|
20 |
-
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
21 |
-
zip_ref.extractall(extract_dir)
|
22 |
-
|
23 |
-
model_tf = tf.saved_model.load(extract_dir)
|
24 |
-
TF_NUM_CLASSES = 7 # asumimos que son las mismas que CLASSES
|
25 |
-
|
26 |
-
# Funci贸n helper para inferencia TensorFlow
|
27 |
-
def predict_tf(img: Image.Image):
|
28 |
-
try:
|
29 |
-
img_resized = img.resize((224,224))
|
30 |
-
img_np = np.array(img_resized) / 255.0
|
31 |
-
if img_np.shape[-1] == 4:
|
32 |
-
img_np = img_np[..., :3]
|
33 |
-
img_tf = tf.convert_to_tensor(img_np, dtype=tf.float32)
|
34 |
-
img_tf = tf.expand_dims(img_tf, axis=0)
|
35 |
-
|
36 |
-
infer = model_tf.signatures["serving_default"]
|
37 |
-
output = infer(img_tf)
|
38 |
-
pred = list(output.values())[0].numpy()[0]
|
39 |
-
probs = tf.nn.softmax(pred[:TF_NUM_CLASSES]).numpy()
|
40 |
-
return probs
|
41 |
-
except Exception as e:
|
42 |
-
print(f"Error en predict_tf: {e}")
|
43 |
-
return np.zeros(TF_NUM_CLASSES)
|
44 |
-
|
45 |
-
# --- Cargar modelos ---
|
46 |
MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
|
47 |
feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME)
|
48 |
model_vit = ViTForImageClassification.from_pretrained(MODEL_NAME)
|
49 |
model_vit.eval()
|
|
|
|
|
50 |
model_malignancy = load_learner("ada_learn_malben.pkl")
|
51 |
model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl")
|
52 |
|
|
|
|
|
|
|
|
|
|
|
53 |
CLASSES = [
|
54 |
"Queratosis act铆nica / Bowen", "Carcinoma c茅lulas basales",
|
55 |
"Lesi贸n querat贸sica benigna", "Dermatofibroma",
|
56 |
"Melanoma maligno", "Nevus melanoc铆tico", "Lesi贸n vascular"
|
57 |
]
|
|
|
58 |
RISK_LEVELS = {
|
59 |
0: {'level': 'Moderado', 'color': '#ffaa00', 'weight': 0.6},
|
60 |
1: {'level': 'Alto', 'color': '#ff4444', 'weight': 0.8},
|
@@ -94,16 +72,16 @@ def analizar_lesion_combined(img):
|
|
94 |
pred_fast_type = "Error"
|
95 |
|
96 |
try:
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
except:
|
105 |
-
|
106 |
-
|
107 |
|
108 |
colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)]
|
109 |
fig, ax = plt.subplots(figsize=(8, 3))
|
@@ -128,7 +106,7 @@ def analizar_lesion_combined(img):
|
|
128 |
<tr><td>馃 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr>
|
129 |
<tr><td>馃К Fast.ai (clasificaci贸n)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
|
130 |
<tr><td>鈿狅笍 Fast.ai (malignidad)</td><td><b>{"Maligno" if prob_malignant > 0.5 else "Benigno"}</b></td><td>{prob_malignant:.1%}</td></tr>
|
131 |
-
<tr><td>馃敩
|
132 |
</table>
|
133 |
<br>
|
134 |
<b>馃И Recomendaci贸n autom谩tica:</b><br>
|
@@ -152,12 +130,10 @@ demo = gr.Interface(
|
|
152 |
fn=analizar_lesion_combined,
|
153 |
inputs=gr.Image(type="pil", label="Sube una imagen de la lesi贸n"),
|
154 |
outputs=[gr.HTML(label="Informe combinado"), gr.HTML(label="Gr谩fico ViT")],
|
155 |
-
title="Detector de Lesiones Cut谩neas (ViT + Fast.ai +
|
156 |
-
description="Comparaci贸n entre ViT transformer (HAM10000), dos modelos Fast.ai y un modelo
|
157 |
flagging_mode="never"
|
158 |
)
|
159 |
|
160 |
if __name__ == "__main__":
|
161 |
demo.launch()
|
162 |
-
|
163 |
-
|
|
|
1 |
import torch
|
2 |
from transformers import ViTImageProcessor, ViTForImageClassification
|
3 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
4 |
from fastai.learner import load_learner
|
5 |
from fastai.vision.core import PILImage
|
6 |
from PIL import Image
|
|
|
11 |
import base64
|
12 |
import os
|
13 |
import zipfile
|
|
|
14 |
|
15 |
+
# --- Cargar modelo ViT ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
|
17 |
feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME)
|
18 |
model_vit = ViTForImageClassification.from_pretrained(MODEL_NAME)
|
19 |
model_vit.eval()
|
20 |
+
|
21 |
+
# --- Cargar modelos Fast.ai ---
|
22 |
model_malignancy = load_learner("ada_learn_malben.pkl")
|
23 |
model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl")
|
24 |
|
25 |
+
# --- Cargar modelo EfficientNetB3 desde Hugging Face ---
|
26 |
+
model_effnet = AutoModelForImageClassification.from_pretrained("syaha/skin_cancer_detection_model")
|
27 |
+
extractor_effnet = AutoFeatureExtractor.from_pretrained("syaha/skin_cancer_detection_model")
|
28 |
+
model_effnet.eval()
|
29 |
+
|
30 |
CLASSES = [
|
31 |
"Queratosis act铆nica / Bowen", "Carcinoma c茅lulas basales",
|
32 |
"Lesi贸n querat贸sica benigna", "Dermatofibroma",
|
33 |
"Melanoma maligno", "Nevus melanoc铆tico", "Lesi贸n vascular"
|
34 |
]
|
35 |
+
|
36 |
RISK_LEVELS = {
|
37 |
0: {'level': 'Moderado', 'color': '#ffaa00', 'weight': 0.6},
|
38 |
1: {'level': 'Alto', 'color': '#ff4444', 'weight': 0.8},
|
|
|
72 |
pred_fast_type = "Error"
|
73 |
|
74 |
try:
|
75 |
+
inputs_eff = extractor_effnet(images=img, return_tensors="pt")
|
76 |
+
with torch.no_grad():
|
77 |
+
outputs_eff = model_effnet(**inputs_eff)
|
78 |
+
probs_eff = outputs_eff.logits.softmax(dim=-1).cpu().numpy()[0]
|
79 |
+
pred_idx_eff = int(np.argmax(probs_eff))
|
80 |
+
confidence_eff = probs_eff[pred_idx_eff]
|
81 |
+
pred_class_eff = model_effnet.config.id2label[str(pred_idx_eff)]
|
82 |
+
except Exception as e:
|
83 |
+
pred_class_eff = "Error"
|
84 |
+
confidence_eff = 0.0
|
85 |
|
86 |
colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)]
|
87 |
fig, ax = plt.subplots(figsize=(8, 3))
|
|
|
106 |
<tr><td>馃 ViT (transformer)</td><td><b>{pred_class_vit}</b></td><td>{confidence_vit:.1%}</td></tr>
|
107 |
<tr><td>馃К Fast.ai (clasificaci贸n)</td><td><b>{pred_fast_type}</b></td><td>N/A</td></tr>
|
108 |
<tr><td>鈿狅笍 Fast.ai (malignidad)</td><td><b>{"Maligno" if prob_malignant > 0.5 else "Benigno"}</b></td><td>{prob_malignant:.1%}</td></tr>
|
109 |
+
<tr><td>馃敩 EfficientNetB3 (HAM10000)</td><td><b>{pred_class_eff}</b></td><td>{confidence_eff:.1%}</td></tr>
|
110 |
</table>
|
111 |
<br>
|
112 |
<b>馃И Recomendaci贸n autom谩tica:</b><br>
|
|
|
130 |
fn=analizar_lesion_combined,
|
131 |
inputs=gr.Image(type="pil", label="Sube una imagen de la lesi贸n"),
|
132 |
outputs=[gr.HTML(label="Informe combinado"), gr.HTML(label="Gr谩fico ViT")],
|
133 |
+
title="Detector de Lesiones Cut谩neas (ViT + Fast.ai + EfficientNetB3)",
|
134 |
+
description="Comparaci贸n entre ViT transformer (HAM10000), dos modelos Fast.ai y un modelo EfficientNetB3.",
|
135 |
flagging_mode="never"
|
136 |
)
|
137 |
|
138 |
if __name__ == "__main__":
|
139 |
demo.launch()
|
|
|
|