Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,3 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import ViTImageProcessor, ViTForImageClassification
|
3 |
-
from fastai.learner import load_learner
|
4 |
-
from fastai.vision.core import PILImage
|
5 |
-
from PIL import Image
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import numpy as np
|
8 |
-
import gradio as gr
|
9 |
-
import io
|
10 |
-
import base64
|
11 |
-
import tensorflow as tf
|
12 |
-
import keras # <--- nuevo import para TFSMLayer
|
13 |
-
import zipfile
|
14 |
-
import os
|
15 |
-
|
16 |
-
# 🔹 Cargar modelo ViT desde Hugging Face
|
17 |
-
MODEL_NAME = "ahishamm/vit-base-HAM-10000-sharpened-patch-32"
|
18 |
-
feature_extractor = ViTImageProcessor.from_pretrained(MODEL_NAME)
|
19 |
-
model_vit = ViTForImageClassification.from_pretrained(MODEL_NAME)
|
20 |
-
model_vit.eval()
|
21 |
-
|
22 |
-
# 🔹 Cargar modelos Fast.ai desde archivos locales
|
23 |
-
model_malignancy = load_learner("ada_learn_malben.pkl")
|
24 |
-
model_norm2000 = load_learner("ada_learn_skin_norm2000.pkl")
|
25 |
-
|
26 |
-
# 🔹 Preparar y cargar modelo TensorFlow ISIC
|
27 |
-
zip_path = "saved_model.zip"
|
28 |
-
extract_dir = "saved_model"
|
29 |
-
if not os.path.exists(extract_dir):
|
30 |
-
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
31 |
-
zip_ref.extractall(extract_dir)
|
32 |
-
|
33 |
-
# Cargar modelo con TFSMLayer (solo para inferencia)
|
34 |
-
model_isic = keras.layers.TFSMLayer(extract_dir, call_endpoint='serving_default')
|
35 |
-
|
36 |
-
# 🔹 Clases y niveles de riesgo
|
37 |
-
CLASSES = [
|
38 |
-
"Queratosis actínica / Bowen", "Carcinoma células basales",
|
39 |
-
"Lesión queratósica benigna", "Dermatofibroma",
|
40 |
-
"Melanoma maligno", "Nevus melanocítico", "Lesión vascular"
|
41 |
-
]
|
42 |
-
RISK_LEVELS = {
|
43 |
-
0: {'level': 'Moderado', 'color': '#ffaa00', 'weight': 0.6},
|
44 |
-
1: {'level': 'Alto', 'color': '#ff4444', 'weight': 0.8},
|
45 |
-
2: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
|
46 |
-
3: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
|
47 |
-
4: {'level': 'Crítico', 'color': '#cc0000', 'weight': 1.0},
|
48 |
-
5: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1},
|
49 |
-
6: {'level': 'Bajo', 'color': '#44ff44', 'weight': 0.1}
|
50 |
-
}
|
51 |
-
|
52 |
-
def preprocess_image_isic(image: Image.Image):
|
53 |
-
# Ajustar tamaño y normalización que espera el modelo ISIC
|
54 |
-
image = image.resize((224, 224))
|
55 |
-
img_array = np.array(image) / 255.0
|
56 |
-
if img_array.shape[-1] == 4: # eliminar canal alpha si existe
|
57 |
-
img_array = img_array[..., :3]
|
58 |
-
img_array = np.expand_dims(img_array, axis=0) # batch dimension
|
59 |
-
return img_array.astype(np.float32)
|
60 |
-
|
61 |
def analizar_lesion_combined(img):
|
62 |
# Convertir imagen para Fastai
|
63 |
img_fastai = PILImage.create(img)
|
@@ -78,8 +18,16 @@ def analizar_lesion_combined(img):
|
|
78 |
|
79 |
# Modelo TensorFlow ISIC (usando TFSMLayer)
|
80 |
x_isic = preprocess_image_isic(img)
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
pred_idx_isic = int(np.argmax(preds_isic))
|
84 |
pred_class_isic = CLASSES[pred_idx_isic]
|
85 |
confidence_isic = preds_isic[pred_idx_isic]
|
@@ -116,7 +64,6 @@ def analizar_lesion_combined(img):
|
|
116 |
<b>🩺 Recomendación automática:</b><br>
|
117 |
"""
|
118 |
|
119 |
-
# Recomendación basada en ViT + malignidad
|
120 |
cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
|
121 |
if prob_malignant > 0.7 or cancer_risk_score > 0.6:
|
122 |
informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
|
@@ -130,16 +77,3 @@ def analizar_lesion_combined(img):
|
|
130 |
informe += "</div>"
|
131 |
|
132 |
return informe, html_chart
|
133 |
-
|
134 |
-
# 🔹 Interfaz Gradio
|
135 |
-
demo = gr.Interface(
|
136 |
-
fn=analizar_lesion_combined,
|
137 |
-
inputs=gr.Image(type="pil", label="Sube una imagen de la lesión"),
|
138 |
-
outputs=[gr.HTML(label="Informe combinado"), gr.HTML(label="Gráfico ViT")],
|
139 |
-
title="Detector de Lesiones Cutáneas (ViT + Fast.ai + ISIC TensorFlow)",
|
140 |
-
description="Comparación entre ViT transformer (HAM10000), dos modelos Fast.ai y el modelo ISIC TensorFlow.",
|
141 |
-
flagging_mode="never"
|
142 |
-
)
|
143 |
-
|
144 |
-
if __name__ == "__main__":
|
145 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def analizar_lesion_combined(img):
|
2 |
# Convertir imagen para Fastai
|
3 |
img_fastai = PILImage.create(img)
|
|
|
18 |
|
19 |
# Modelo TensorFlow ISIC (usando TFSMLayer)
|
20 |
x_isic = preprocess_image_isic(img)
|
21 |
+
preds_isic_dict = model_isic(x_isic) # devuelve dict con tensores
|
22 |
+
|
23 |
+
# DEBUG: imprime claves para saber cuál usar
|
24 |
+
print("Claves de salida de model_isic:", preds_isic_dict.keys())
|
25 |
+
|
26 |
+
# Por ejemplo, si la clave correcta es 'outputs', cámbiala aquí:
|
27 |
+
# Si sólo hay una clave, la usamos directamente:
|
28 |
+
key = list(preds_isic_dict.keys())[0]
|
29 |
+
preds_isic = preds_isic_dict[key].numpy()[0]
|
30 |
+
|
31 |
pred_idx_isic = int(np.argmax(preds_isic))
|
32 |
pred_class_isic = CLASSES[pred_idx_isic]
|
33 |
confidence_isic = preds_isic[pred_idx_isic]
|
|
|
64 |
<b>🩺 Recomendación automática:</b><br>
|
65 |
"""
|
66 |
|
|
|
67 |
cancer_risk_score = sum(probs_vit[i] * RISK_LEVELS[i]['weight'] for i in range(7))
|
68 |
if prob_malignant > 0.7 or cancer_risk_score > 0.6:
|
69 |
informe += "🚨 <b>CRÍTICO</b> – Derivación urgente a oncología dermatológica"
|
|
|
77 |
informe += "</div>"
|
78 |
|
79 |
return informe, html_chart
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|