import traceback # Asegúrate de tener esto al inicio de tu script
def analizar_lesion_combined(img):
try:
# Convertir imagen para Fastai
img_fastai = PILImage.create(img)
# ViT prediction
inputs = feature_extractor(img, return_tensors="pt")
with torch.no_grad():
outputs = model_vit(**inputs)
probs_vit = outputs.logits.softmax(dim=-1).cpu().numpy()[0]
pred_idx_vit = int(np.argmax(probs_vit))
pred_class_vit = CLASSES[pred_idx_vit]
confidence_vit = probs_vit[pred_idx_vit]
# Fast.ai models
pred_fast_malignant, _, probs_fast_mal = model_malignancy.predict(img_fastai)
prob_malignant = float(probs_fast_mal[1]) # índice 1 = maligno
pred_fast_type, _, probs_fast_type = model_norm2000.predict(img_fastai)
# Modelo TensorFlow ISIC (usando TFSMLayer)
x_isic = preprocess_image_isic(img)
preds_isic_dict = model_isic(x_isic)
print("🔍 Claves de salida de model_isic:", preds_isic_dict.keys())
key = list(preds_isic_dict.keys())[0]
preds_isic = preds_isic_dict[key].numpy()[0]
pred_idx_isic = int(np.argmax(preds_isic))
pred_class_isic = CLASSES[pred_idx_isic]
confidence_isic = preds_isic[pred_idx_isic]
# Gráfico ViT
colors_bars = [RISK_LEVELS[i]['color'] for i in range(7)]
fig, ax = plt.subplots(figsize=(8, 3))
ax.bar(CLASSES, probs_vit*100, color=colors_bars)
ax.set_title("Probabilidad ViT por tipo de lesión")
ax.set_ylabel("Probabilidad (%)")
ax.set_xticks(np.arange(len(CLASSES)))
ax.set_xticklabels(CLASSES, rotation=45, ha='right')
ax.grid(axis='y', alpha=0.2)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format="png")
plt.close(fig)
img_bytes = buf.getvalue()
img_b64 = base64.b64encode(img_bytes).decode("utf-8")
html_chart = f''
# Informe HTML con los 4 modelos
informe = f"""
🔍 Modelo | Resultado | Confianza |
---|---|---|
🧠 ViT (transformer) | {pred_class_vit} | {confidence_vit:.1%} |
🧬 Fast.ai (clasificación) | {pred_fast_type} | N/A |
⚠️ Fast.ai (malignidad) | {"Maligno" if prob_malignant > 0.5 else "Benigno"} | {prob_malignant:.1%} |
🔬 ISIC TensorFlow | {pred_class_isic} | {confidence_isic:.1%} |