Remove MMOCR
Browse files- app_pages/ocr_comparator.py +181 -171
app_pages/ocr_comparator.py
CHANGED
|
@@ -2,12 +2,12 @@
|
|
| 2 |
EasyOcr, PaddleOCR, MMOCR, Tesseract
|
| 3 |
"""
|
| 4 |
|
| 5 |
-
import mim
|
| 6 |
-
|
| 7 |
-
mim.install(['mmengine>=0.7.1,<1.1.0'])
|
| 8 |
-
mim.install(['mmcv>=2.0.0rc4,<2.1.0'])
|
| 9 |
-
mim.install(['mmdet>=3.0.rc5,<3.2.0'])
|
| 10 |
-
mim.install(['mmocr'])
|
| 11 |
|
| 12 |
import streamlit as st
|
| 13 |
import plotly.express as px
|
|
@@ -21,7 +21,7 @@ from PIL import Image, ImageColor
|
|
| 21 |
import PIL
|
| 22 |
import easyocr
|
| 23 |
from paddleocr import PaddleOCR
|
| 24 |
-
from mmocr.utils.ocr import MMOCR
|
| 25 |
import pytesseract
|
| 26 |
from pytesseract import Output
|
| 27 |
import os
|
|
@@ -80,8 +80,10 @@ def app():
|
|
| 80 |
plotly figure : confidence color scale figure
|
| 81 |
"""
|
| 82 |
# the readers considered
|
| 83 |
-
out_reader_type_list = ['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract']
|
| 84 |
-
out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3}
|
|
|
|
|
|
|
| 85 |
|
| 86 |
# Columns for recognition details results
|
| 87 |
out_cols_size = [2] + [2,1]*(len(out_reader_type_list)-1) # Except Tesseract
|
|
@@ -123,7 +125,7 @@ def app():
|
|
| 123 |
'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \
|
| 124 |
'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'}
|
| 125 |
|
| 126 |
-
out_dict_lang_mmocr = {'English & Chinese': 'en'}
|
| 127 |
|
| 128 |
out_dict_lang_tesseract = {'Afrikaans': 'afr','Albanian': 'sqi','Amharic': 'amh', \
|
| 129 |
'Arabic': 'ara', 'Armenian': 'hye','Assamese': 'asm','Azerbaijani - Cyrilic': 'aze_cyrl', \
|
|
@@ -156,7 +158,8 @@ def app():
|
|
| 156 |
'Uzbek - Cyrilic': 'uzb_cyrl','Uzbek': 'uzb','Vietnamese': 'vie','Welsh': 'cym', \
|
| 157 |
'Western Frisian': 'fry','Yiddish': 'yid','Yoruba': 'yor'}
|
| 158 |
|
| 159 |
-
out_list_dict_lang = [out_dict_lang_easyocr, out_dict_lang_ppocr,
|
|
|
|
| 160 |
out_dict_lang_tesseract]
|
| 161 |
|
| 162 |
# Initialization of detection form
|
|
@@ -221,18 +224,18 @@ def app():
|
|
| 221 |
return out_ocr
|
| 222 |
|
| 223 |
###
|
| 224 |
-
|
| 225 |
-
def init_mmocr(in_params):
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
|
| 237 |
###
|
| 238 |
def init_readers(in_list_params):
|
|
@@ -255,10 +258,10 @@ def app():
|
|
| 255 |
reader_ppocr = init_ppocr(in_list_params[1])
|
| 256 |
|
| 257 |
# - MMOCR
|
| 258 |
-
with st.spinner("MMOCR reader initialization in progress ..."):
|
| 259 |
-
|
| 260 |
|
| 261 |
-
out_list_readers = [reader_easyocr, reader_ppocr
|
| 262 |
|
| 263 |
return out_list_readers
|
| 264 |
|
|
@@ -351,44 +354,44 @@ def app():
|
|
| 351 |
return out_ppocr_boxes_coordinates, out_status
|
| 352 |
|
| 353 |
###
|
| 354 |
-
|
| 355 |
-
def mmocr_detect(_in_reader, in_image_path):
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
|
| 393 |
###
|
| 394 |
def cropped_1box(in_box, in_img):
|
|
@@ -481,14 +484,14 @@ def app():
|
|
| 481 |
##
|
| 482 |
|
| 483 |
## ------- MMOCR Text detection
|
| 484 |
-
with st.spinner('MMOCR Text detection in progress ...'):
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
##
|
| 493 |
|
| 494 |
## ------- Tesseract Text detection
|
|
@@ -505,9 +508,11 @@ def app():
|
|
| 505 |
##
|
| 506 |
#
|
| 507 |
out_list_images = _in_list_images + [easyocr_image_detect, ppocr_image_detect, \
|
| 508 |
-
|
|
|
|
| 509 |
out_list_coordinates = [easyocr_boxes_coordinates, ppocr_boxes_coordinates, \
|
| 510 |
-
|
|
|
|
| 511 |
#
|
| 512 |
|
| 513 |
return out_list_images, out_list_coordinates
|
|
@@ -588,8 +593,8 @@ def app():
|
|
| 588 |
list_confidence_easyocr = []
|
| 589 |
list_text_ppocr = []
|
| 590 |
list_confidence_ppocr = []
|
| 591 |
-
list_text_mmocr = []
|
| 592 |
-
list_confidence_mmocr = []
|
| 593 |
|
| 594 |
# Create cropped images from detection
|
| 595 |
list_cropped_images = get_cropped(in_boxes_coordinates, in_image_cv)
|
|
@@ -607,9 +612,9 @@ def app():
|
|
| 607 |
##
|
| 608 |
|
| 609 |
# Recognize with MMOCR
|
| 610 |
-
with st.spinner('MMOCR Text recognition in progress ...'):
|
| 611 |
-
|
| 612 |
-
|
| 613 |
##
|
| 614 |
|
| 615 |
# Recognize with Tesseract
|
|
@@ -624,12 +629,13 @@ def app():
|
|
| 624 |
'confidence_easyocr': list_confidence_easyocr,
|
| 625 |
'text_ppocr': list_text_ppocr,
|
| 626 |
'confidence_ppocr': list_confidence_ppocr,
|
| 627 |
-
'text_mmocr': list_text_mmocr,
|
| 628 |
-
'confidence_mmocr': list_confidence_mmocr
|
| 629 |
}
|
| 630 |
)
|
| 631 |
|
| 632 |
-
out_list_reco_status = [status_easyocr, status_ppocr, status_mmocr, status_tesseract]
|
|
|
|
| 633 |
|
| 634 |
return out_df_results, out_df_results_tesseract, out_list_reco_status
|
| 635 |
|
|
@@ -711,83 +717,83 @@ def app():
|
|
| 711 |
return out_list_text_ppocr, out_list_confidence_ppocr, out_status
|
| 712 |
|
| 713 |
###
|
| 714 |
-
|
| 715 |
-
def mmocr_recog(in_list_images, in_params):
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
def tesserocr_recog(in_img, in_params, in_nb_images):
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
|
| 792 |
###
|
| 793 |
def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \
|
|
@@ -939,13 +945,13 @@ def app():
|
|
| 939 |
# Clear caches
|
| 940 |
easyocr_detect.clear()
|
| 941 |
ppocr_detect.clear()
|
| 942 |
-
mmocr_detect.clear()
|
| 943 |
tesserocr_detect.clear()
|
| 944 |
process_detect.clear()
|
| 945 |
get_cropped.clear()
|
| 946 |
easyocr_recog.clear()
|
| 947 |
ppocr_recog.clear()
|
| 948 |
-
mmocr_recog.clear()
|
| 949 |
tesserocr_recog.clear()
|
| 950 |
|
| 951 |
|
|
@@ -953,6 +959,7 @@ def app():
|
|
| 953 |
#print("PID : ", os.getpid())
|
| 954 |
|
| 955 |
st.title("OCR solutions comparator")
|
|
|
|
| 956 |
st.markdown("##### *EasyOCR, PPOCR, MMOCR, Tesseract*")
|
| 957 |
#st.markdown("#### PID : " + str(os.getpid()))
|
| 958 |
|
|
@@ -969,8 +976,8 @@ def app():
|
|
| 969 |
easyocr_lang = list_dict_lang[0][easyocr_key_lang]
|
| 970 |
ppocr_key_lang = lang_col[1].selectbox(reader_type_list[1]+" :", list_dict_lang[1].keys(), 22)
|
| 971 |
ppocr_lang = list_dict_lang[1][ppocr_key_lang]
|
| 972 |
-
mmocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 0)
|
| 973 |
-
mmocr_lang = list_dict_lang[2][mmocr_key_lang]
|
| 974 |
tesserocr_key_lang = lang_col[3].selectbox(reader_type_list[3]+" :", list_dict_lang[3].keys(), 35)
|
| 975 |
tesserocr_lang = list_dict_lang[3][tesserocr_key_lang]
|
| 976 |
|
|
@@ -1076,7 +1083,7 @@ def app():
|
|
| 1076 |
help='''slow: use polygon box to calculate bbox score, fast: use rectangle box \
|
| 1077 |
to calculate. (default = fast) \n
|
| 1078 |
Use rectlar box to calculate faster, and polygonal box more accurate for curved text area.''')
|
| 1079 |
-
|
| 1080 |
with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \
|
| 1081 |
expanded=False):
|
| 1082 |
t2_det = st.selectbox('det', ['DB_r18','DB_r50','DBPP_r50','DRRG','FCE_IC15', \
|
|
@@ -1088,8 +1095,9 @@ def app():
|
|
| 1088 |
[here](https://mmocr.readthedocs.io/en/latest/textdet_models.html)")
|
| 1089 |
t2_merge_xdist = st.slider('merge_xdist', 1, 50, 20, step=1, \
|
| 1090 |
help='The maximum x-axis distance to merge boxes. (defaut=20)')
|
| 1091 |
-
|
| 1092 |
-
with col2.expander("Choose detection hyperparameters for " + reader_type_list[3], \
|
|
|
|
| 1093 |
expanded=False):
|
| 1094 |
t3_psm = st.selectbox('Page segmentation mode (psm)', \
|
| 1095 |
[' - Default', \
|
|
@@ -1153,7 +1161,7 @@ def app():
|
|
| 1153 |
'det_east_cover_thresh': t1_det_east_cover_thresh, \
|
| 1154 |
'det_east_nms_thresh': t1_det_east_nms_thresh, \
|
| 1155 |
'det_db_score_mode': t1_det_db_score_mode}],
|
| 1156 |
-
[mmocr_lang, {'det': t2_det, 'merge_xdist': t2_merge_xdist}],
|
| 1157 |
[tesserocr_lang, {'lang': tesserocr_lang, 'config': t3_config}]
|
| 1158 |
]
|
| 1159 |
|
|
@@ -1264,7 +1272,7 @@ def app():
|
|
| 1264 |
t1_drop_score = st.slider('drop_score', 0., 1., 0.25, step=.05, \
|
| 1265 |
help="Filter the output by score (from the recognition model), and those \
|
| 1266 |
below this score will not be returned. (default=0.5)")
|
| 1267 |
-
|
| 1268 |
with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \
|
| 1269 |
expanded=False):
|
| 1270 |
t2_recog = st.selectbox('recog', ['ABINet','CRNN','CRNN_TPS','MASTER', \
|
|
@@ -1273,8 +1281,9 @@ def app():
|
|
| 1273 |
help='Text recognition algorithm. (default = SAR)')
|
| 1274 |
st.write("###### *More about text recognition models* 👉 \
|
| 1275 |
[here](https://mmocr.readthedocs.io/en/latest/textrecog_models.html)")
|
| 1276 |
-
|
| 1277 |
-
with st.expander("Choose recognition hyperparameters for " + reader_type_list[3], \
|
|
|
|
| 1278 |
expanded=False):
|
| 1279 |
t3r_psm = st.selectbox('Page segmentation mode (psm)', \
|
| 1280 |
[' - Default', \
|
|
@@ -1387,7 +1396,8 @@ def app():
|
|
| 1387 |
in_conf_threshold=st.session_state.conf_threshold_sld)
|
| 1388 |
|
| 1389 |
st.subheader("Recognition details")
|
| 1390 |
-
with st.expander("Detailed areas for EasyOCR, PPOCR, MMOCR", expanded=True):
|
|
|
|
| 1391 |
cols = st.columns(cols_size)
|
| 1392 |
cols[0].markdown('#### Detected area')
|
| 1393 |
for i in range(1, (len(reader_type_list)-1)*2, 2):
|
|
|
|
| 2 |
EasyOcr, PaddleOCR, MMOCR, Tesseract
|
| 3 |
"""
|
| 4 |
|
| 5 |
+
#import mim
|
| 6 |
+
#
|
| 7 |
+
#mim.install(['mmengine>=0.7.1,<1.1.0'])
|
| 8 |
+
#mim.install(['mmcv>=2.0.0rc4,<2.1.0'])
|
| 9 |
+
#mim.install(['mmdet>=3.0.rc5,<3.2.0'])
|
| 10 |
+
#mim.install(['mmocr'])
|
| 11 |
|
| 12 |
import streamlit as st
|
| 13 |
import plotly.express as px
|
|
|
|
| 21 |
import PIL
|
| 22 |
import easyocr
|
| 23 |
from paddleocr import PaddleOCR
|
| 24 |
+
#from mmocr.utils.ocr import MMOCR
|
| 25 |
import pytesseract
|
| 26 |
from pytesseract import Output
|
| 27 |
import os
|
|
|
|
| 80 |
plotly figure : confidence color scale figure
|
| 81 |
"""
|
| 82 |
# the readers considered
|
| 83 |
+
#out_reader_type_list = ['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract']
|
| 84 |
+
#out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3}
|
| 85 |
+
out_reader_type_list = ['EasyOCR', 'PPOCR', 'Tesseract']
|
| 86 |
+
out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'Tesseract': 2}
|
| 87 |
|
| 88 |
# Columns for recognition details results
|
| 89 |
out_cols_size = [2] + [2,1]*(len(out_reader_type_list)-1) # Except Tesseract
|
|
|
|
| 125 |
'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \
|
| 126 |
'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'}
|
| 127 |
|
| 128 |
+
#out_dict_lang_mmocr = {'English & Chinese': 'en'}
|
| 129 |
|
| 130 |
out_dict_lang_tesseract = {'Afrikaans': 'afr','Albanian': 'sqi','Amharic': 'amh', \
|
| 131 |
'Arabic': 'ara', 'Armenian': 'hye','Assamese': 'asm','Azerbaijani - Cyrilic': 'aze_cyrl', \
|
|
|
|
| 158 |
'Uzbek - Cyrilic': 'uzb_cyrl','Uzbek': 'uzb','Vietnamese': 'vie','Welsh': 'cym', \
|
| 159 |
'Western Frisian': 'fry','Yiddish': 'yid','Yoruba': 'yor'}
|
| 160 |
|
| 161 |
+
out_list_dict_lang = [out_dict_lang_easyocr, out_dict_lang_ppocr, \
|
| 162 |
+
#out_dict_lang_mmocr, \
|
| 163 |
out_dict_lang_tesseract]
|
| 164 |
|
| 165 |
# Initialization of detection form
|
|
|
|
| 224 |
return out_ocr
|
| 225 |
|
| 226 |
###
|
| 227 |
+
#@st.experimental_memo(show_spinner=False)
|
| 228 |
+
#def init_mmocr(in_params):
|
| 229 |
+
# """Initialization of MMOCR reader
|
| 230 |
+
#
|
| 231 |
+
# Args:
|
| 232 |
+
# in_params (dict): dict with parameters
|
| 233 |
+
#
|
| 234 |
+
# Returns:
|
| 235 |
+
# mmocr reader: the ppocr reader instance
|
| 236 |
+
# """
|
| 237 |
+
# out_ocr = MMOCR(recog=None, **in_params[1])
|
| 238 |
+
# return out_ocr
|
| 239 |
|
| 240 |
###
|
| 241 |
def init_readers(in_list_params):
|
|
|
|
| 258 |
reader_ppocr = init_ppocr(in_list_params[1])
|
| 259 |
|
| 260 |
# - MMOCR
|
| 261 |
+
#with st.spinner("MMOCR reader initialization in progress ..."):
|
| 262 |
+
# reader_mmocr = init_mmocr(in_list_params[2])
|
| 263 |
|
| 264 |
+
out_list_readers = [reader_easyocr, reader_ppocr] #, reader_mmocr]
|
| 265 |
|
| 266 |
return out_list_readers
|
| 267 |
|
|
|
|
| 354 |
return out_ppocr_boxes_coordinates, out_status
|
| 355 |
|
| 356 |
###
|
| 357 |
+
#@st.experimental_memo(show_spinner=False)
|
| 358 |
+
#def mmocr_detect(_in_reader, in_image_path):
|
| 359 |
+
# """Detection with MMOCR
|
| 360 |
+
#
|
| 361 |
+
# Args:
|
| 362 |
+
# _in_reader (EasyORC reader) : the previously initialized instance
|
| 363 |
+
# in_image_path (string) : locally saved image path
|
| 364 |
+
# in_params (list) : list with the parameters
|
| 365 |
+
#
|
| 366 |
+
# Returns:
|
| 367 |
+
# list : list of the boxes coordinates
|
| 368 |
+
# exception on error, string 'OK' otherwise
|
| 369 |
+
# """
|
| 370 |
+
# # MMOCR detection method
|
| 371 |
+
# out_mmocr_boxes_coordinates = []
|
| 372 |
+
# try:
|
| 373 |
+
# det_result = _in_reader.readtext(in_image_path, details=True)
|
| 374 |
+
# bboxes_list = [res['boundary_result'] for res in det_result]
|
| 375 |
+
# for bboxes in bboxes_list:
|
| 376 |
+
# for bbox in bboxes:
|
| 377 |
+
# if len(bbox) > 9:
|
| 378 |
+
# min_x = min(bbox[0:-1:2])
|
| 379 |
+
# min_y = min(bbox[1:-1:2])
|
| 380 |
+
# max_x = max(bbox[0:-1:2])
|
| 381 |
+
# max_y = max(bbox[1:-1:2])
|
| 382 |
+
# #box = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
|
| 383 |
+
# else:
|
| 384 |
+
# min_x = min(bbox[0:-1:2])
|
| 385 |
+
# min_y = min(bbox[1::2])
|
| 386 |
+
# max_x = max(bbox[0:-1:2])
|
| 387 |
+
# max_y = max(bbox[1::2])
|
| 388 |
+
# box4 = [ [min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y] ]
|
| 389 |
+
# out_mmocr_boxes_coordinates.append(box4)
|
| 390 |
+
# out_status = 'OK'
|
| 391 |
+
# except Exception as e:
|
| 392 |
+
# out_status = e
|
| 393 |
+
#
|
| 394 |
+
# return out_mmocr_boxes_coordinates, out_status
|
| 395 |
|
| 396 |
###
|
| 397 |
def cropped_1box(in_box, in_img):
|
|
|
|
| 484 |
##
|
| 485 |
|
| 486 |
## ------- MMOCR Text detection
|
| 487 |
+
#with st.spinner('MMOCR Text detection in progress ...'):
|
| 488 |
+
# mmocr_boxes_coordinates, mmocr_status = mmocr_detect(_in_list_readers[2], in_image_path)
|
| 489 |
+
# # Visualization
|
| 490 |
+
# if mmocr_boxes_coordinates:
|
| 491 |
+
# mmocr_image_detect = draw_detected(_in_list_images[0], mmocr_boxes_coordinates, \
|
| 492 |
+
# in_color, 'None', 3)
|
| 493 |
+
# else:
|
| 494 |
+
# mmocr_image_detect = mmocr_status
|
| 495 |
##
|
| 496 |
|
| 497 |
## ------- Tesseract Text detection
|
|
|
|
| 508 |
##
|
| 509 |
#
|
| 510 |
out_list_images = _in_list_images + [easyocr_image_detect, ppocr_image_detect, \
|
| 511 |
+
# mmocr_image_detect, \
|
| 512 |
+
tesserocr_image_detect]
|
| 513 |
out_list_coordinates = [easyocr_boxes_coordinates, ppocr_boxes_coordinates, \
|
| 514 |
+
# mmocr_boxes_coordinates, \
|
| 515 |
+
tesserocr_boxes_coordinates]
|
| 516 |
#
|
| 517 |
|
| 518 |
return out_list_images, out_list_coordinates
|
|
|
|
| 593 |
list_confidence_easyocr = []
|
| 594 |
list_text_ppocr = []
|
| 595 |
list_confidence_ppocr = []
|
| 596 |
+
#list_text_mmocr = []
|
| 597 |
+
#list_confidence_mmocr = []
|
| 598 |
|
| 599 |
# Create cropped images from detection
|
| 600 |
list_cropped_images = get_cropped(in_boxes_coordinates, in_image_cv)
|
|
|
|
| 612 |
##
|
| 613 |
|
| 614 |
# Recognize with MMOCR
|
| 615 |
+
#with st.spinner('MMOCR Text recognition in progress ...'):
|
| 616 |
+
# list_text_mmocr, list_confidence_mmocr, status_mmocr = \
|
| 617 |
+
# mmocr_recog(list_cropped_images, in_list_dict_params[2])
|
| 618 |
##
|
| 619 |
|
| 620 |
# Recognize with Tesseract
|
|
|
|
| 629 |
'confidence_easyocr': list_confidence_easyocr,
|
| 630 |
'text_ppocr': list_text_ppocr,
|
| 631 |
'confidence_ppocr': list_confidence_ppocr,
|
| 632 |
+
#'text_mmocr': list_text_mmocr,
|
| 633 |
+
#'confidence_mmocr': list_confidence_mmocr
|
| 634 |
}
|
| 635 |
)
|
| 636 |
|
| 637 |
+
#out_list_reco_status = [status_easyocr, status_ppocr, status_mmocr, status_tesseract]
|
| 638 |
+
out_list_reco_status = [status_easyocr, status_ppocr, status_tesseract]
|
| 639 |
|
| 640 |
return out_df_results, out_df_results_tesseract, out_list_reco_status
|
| 641 |
|
|
|
|
| 717 |
return out_list_text_ppocr, out_list_confidence_ppocr, out_status
|
| 718 |
|
| 719 |
###
|
| 720 |
+
#@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
| 721 |
+
#def mmocr_recog(in_list_images, in_params):
|
| 722 |
+
# """Recognition with MMOCR
|
| 723 |
+
#
|
| 724 |
+
# Args:
|
| 725 |
+
# in_list_images (list) : list of cropped images
|
| 726 |
+
# in_params (dict) : parameters for recognition
|
| 727 |
+
#
|
| 728 |
+
# Returns:
|
| 729 |
+
# list : list of recognized text
|
| 730 |
+
# list : list of recognition confidence
|
| 731 |
+
# string/Exception : recognition status
|
| 732 |
+
# """
|
| 733 |
+
# ## ------- MMOCR Text recognition
|
| 734 |
+
# out_list_text_mmocr = []
|
| 735 |
+
# out_list_confidence_mmocr = []
|
| 736 |
+
# try:
|
| 737 |
+
# reader_mmocr = MMOCR(det=None, **in_params)
|
| 738 |
+
# step = 2*len(in_list_images) # third recognition process
|
| 739 |
+
# nb_steps = 4 * len(in_list_images)
|
| 740 |
+
# progress_bar = st.progress(step/nb_steps)
|
| 741 |
+
#
|
| 742 |
+
# for ind_img, cropped in enumerate(in_list_images):
|
| 743 |
+
# result = reader_mmocr.readtext(cropped, details=True)
|
| 744 |
+
# try:
|
| 745 |
+
# out_list_text_mmocr.append(result[0]['text'])
|
| 746 |
+
# out_list_confidence_mmocr.append(np.round(100* \
|
| 747 |
+
# (np.array(result[0]['score']).mean()), 1))
|
| 748 |
+
# except:
|
| 749 |
+
# out_list_text_mmocr.append('Not recognize')
|
| 750 |
+
# out_list_confidence_mmocr.append(100.)
|
| 751 |
+
# progress_bar.progress((step+ind_img+1)/nb_steps)
|
| 752 |
+
# out_status = 'OK'
|
| 753 |
+
# except Exception as e:
|
| 754 |
+
# out_status = e
|
| 755 |
+
# progress_bar.empty()
|
| 756 |
+
#
|
| 757 |
+
# return out_list_text_mmocr, out_list_confidence_mmocr, out_status
|
| 758 |
+
#
|
| 759 |
+
####
|
| 760 |
+
#@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
|
| 761 |
+
#def tesserocr_recog(in_img, in_params, in_nb_images):
|
| 762 |
+
# """Recognition with Tesseract
|
| 763 |
+
#
|
| 764 |
+
# Args:
|
| 765 |
+
# in_image_cv (matrix) : original image
|
| 766 |
+
# in_params (dict) : parameters for recognition
|
| 767 |
+
# in_nb_images : nb cropped images (used for progress bar)
|
| 768 |
+
#
|
| 769 |
+
# Returns:
|
| 770 |
+
# Pandas data frame : recognition results
|
| 771 |
+
# string/Exception : recognition status
|
| 772 |
+
# """
|
| 773 |
+
# ## ------- Tesseract Text recognition
|
| 774 |
+
# step = 3*in_nb_images # fourth recognition process
|
| 775 |
+
# nb_steps = 4 * in_nb_images
|
| 776 |
+
# progress_bar = st.progress(step/nb_steps)
|
| 777 |
+
#
|
| 778 |
+
# try:
|
| 779 |
+
# out_df_result = pytesseract.image_to_data(in_img, **in_params,output_type=Output.DATAFRAME)
|
| 780 |
+
#
|
| 781 |
+
# out_df_result['box'] = out_df_result.apply(lambda d: [[d['left'], d['top']], \
|
| 782 |
+
# [d['left'] + d['width'], d['top']], \
|
| 783 |
+
# [d['left']+d['width'], d['top']+d['height']], \
|
| 784 |
+
# [d['left'], d['top'] + d['height']], \
|
| 785 |
+
# ], axis=1)
|
| 786 |
+
# out_df_result['cropped'] = out_df_result['box'].apply(lambda b: cropped_1box(b, in_img))
|
| 787 |
+
# out_df_result = out_df_result[(out_df_result.word_num > 0) & (out_df_result.text != ' ')] \
|
| 788 |
+
# .reset_index(drop=True)
|
| 789 |
+
# out_status = 'OK'
|
| 790 |
+
# except Exception as e:
|
| 791 |
+
# out_df_result = pd.DataFrame([])
|
| 792 |
+
# out_status = e
|
| 793 |
+
#
|
| 794 |
+
# progress_bar.progress(1.)
|
| 795 |
+
#
|
| 796 |
+
# return out_df_result, out_status
|
| 797 |
|
| 798 |
###
|
| 799 |
def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \
|
|
|
|
| 945 |
# Clear caches
|
| 946 |
easyocr_detect.clear()
|
| 947 |
ppocr_detect.clear()
|
| 948 |
+
#mmocr_detect.clear()
|
| 949 |
tesserocr_detect.clear()
|
| 950 |
process_detect.clear()
|
| 951 |
get_cropped.clear()
|
| 952 |
easyocr_recog.clear()
|
| 953 |
ppocr_recog.clear()
|
| 954 |
+
#mmocr_recog.clear()
|
| 955 |
tesserocr_recog.clear()
|
| 956 |
|
| 957 |
|
|
|
|
| 959 |
#print("PID : ", os.getpid())
|
| 960 |
|
| 961 |
st.title("OCR solutions comparator")
|
| 962 |
+
#st.markdown("##### *EasyOCR, PPOCR, Tesseract*")
|
| 963 |
st.markdown("##### *EasyOCR, PPOCR, MMOCR, Tesseract*")
|
| 964 |
#st.markdown("#### PID : " + str(os.getpid()))
|
| 965 |
|
|
|
|
| 976 |
easyocr_lang = list_dict_lang[0][easyocr_key_lang]
|
| 977 |
ppocr_key_lang = lang_col[1].selectbox(reader_type_list[1]+" :", list_dict_lang[1].keys(), 22)
|
| 978 |
ppocr_lang = list_dict_lang[1][ppocr_key_lang]
|
| 979 |
+
#mmocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 0)
|
| 980 |
+
#mmocr_lang = list_dict_lang[2][mmocr_key_lang]
|
| 981 |
tesserocr_key_lang = lang_col[3].selectbox(reader_type_list[3]+" :", list_dict_lang[3].keys(), 35)
|
| 982 |
tesserocr_lang = list_dict_lang[3][tesserocr_key_lang]
|
| 983 |
|
|
|
|
| 1083 |
help='''slow: use polygon box to calculate bbox score, fast: use rectangle box \
|
| 1084 |
to calculate. (default = fast) \n
|
| 1085 |
Use rectlar box to calculate faster, and polygonal box more accurate for curved text area.''')
|
| 1086 |
+
"""
|
| 1087 |
with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \
|
| 1088 |
expanded=False):
|
| 1089 |
t2_det = st.selectbox('det', ['DB_r18','DB_r50','DBPP_r50','DRRG','FCE_IC15', \
|
|
|
|
| 1095 |
[here](https://mmocr.readthedocs.io/en/latest/textdet_models.html)")
|
| 1096 |
t2_merge_xdist = st.slider('merge_xdist', 1, 50, 20, step=1, \
|
| 1097 |
help='The maximum x-axis distance to merge boxes. (defaut=20)')
|
| 1098 |
+
"""
|
| 1099 |
+
#with col2.expander("Choose detection hyperparameters for " + reader_type_list[3], \
|
| 1100 |
+
with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \
|
| 1101 |
expanded=False):
|
| 1102 |
t3_psm = st.selectbox('Page segmentation mode (psm)', \
|
| 1103 |
[' - Default', \
|
|
|
|
| 1161 |
'det_east_cover_thresh': t1_det_east_cover_thresh, \
|
| 1162 |
'det_east_nms_thresh': t1_det_east_nms_thresh, \
|
| 1163 |
'det_db_score_mode': t1_det_db_score_mode}],
|
| 1164 |
+
#[mmocr_lang, {'det': t2_det, 'merge_xdist': t2_merge_xdist}],
|
| 1165 |
[tesserocr_lang, {'lang': tesserocr_lang, 'config': t3_config}]
|
| 1166 |
]
|
| 1167 |
|
|
|
|
| 1272 |
t1_drop_score = st.slider('drop_score', 0., 1., 0.25, step=.05, \
|
| 1273 |
help="Filter the output by score (from the recognition model), and those \
|
| 1274 |
below this score will not be returned. (default=0.5)")
|
| 1275 |
+
"""
|
| 1276 |
with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \
|
| 1277 |
expanded=False):
|
| 1278 |
t2_recog = st.selectbox('recog', ['ABINet','CRNN','CRNN_TPS','MASTER', \
|
|
|
|
| 1281 |
help='Text recognition algorithm. (default = SAR)')
|
| 1282 |
st.write("###### *More about text recognition models* 👉 \
|
| 1283 |
[here](https://mmocr.readthedocs.io/en/latest/textrecog_models.html)")
|
| 1284 |
+
"""
|
| 1285 |
+
#with st.expander("Choose recognition hyperparameters for " + reader_type_list[3], \
|
| 1286 |
+
with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \
|
| 1287 |
expanded=False):
|
| 1288 |
t3r_psm = st.selectbox('Page segmentation mode (psm)', \
|
| 1289 |
[' - Default', \
|
|
|
|
| 1396 |
in_conf_threshold=st.session_state.conf_threshold_sld)
|
| 1397 |
|
| 1398 |
st.subheader("Recognition details")
|
| 1399 |
+
#with st.expander("Detailed areas for EasyOCR, PPOCR, MMOCR", expanded=True):
|
| 1400 |
+
with st.expander("Detailed areas for EasyOCR, PPOCR", expanded=True):
|
| 1401 |
cols = st.columns(cols_size)
|
| 1402 |
cols[0].markdown('#### Detected area')
|
| 1403 |
for i in range(1, (len(reader_type_list)-1)*2, 2):
|