Commit
·
91cb2a2
1
Parent(s):
1f35814
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 3 |
+
from huggingface_hub.repocard import metadata_load
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
from utils import *
|
| 8 |
+
|
| 9 |
+
api = HfApi()
|
| 10 |
+
|
| 11 |
+
def get_user_models(hf_username, env_tag, lib_tag):
|
| 12 |
+
"""
|
| 13 |
+
List the Reinforcement Learning models
|
| 14 |
+
from user given environment and lib
|
| 15 |
+
:param hf_username: User HF username
|
| 16 |
+
:param env_tag: Environment tag
|
| 17 |
+
:param lib_tag: Library tag
|
| 18 |
+
"""
|
| 19 |
+
api = HfApi()
|
| 20 |
+
models = api.list_models(author=hf_username, filter=["reinforcement-learning", env_tag, lib_tag])
|
| 21 |
+
|
| 22 |
+
user_model_ids = [x.modelId for x in models]
|
| 23 |
+
return user_model_ids
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_metadata(model_id):
|
| 27 |
+
"""
|
| 28 |
+
Get model metadata (contains evaluation data)
|
| 29 |
+
:param model_id
|
| 30 |
+
"""
|
| 31 |
+
try:
|
| 32 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
| 33 |
+
return metadata_load(readme_path)
|
| 34 |
+
except requests.exceptions.HTTPError:
|
| 35 |
+
# 404 README.md not found
|
| 36 |
+
return None
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def parse_metrics_accuracy(meta):
|
| 40 |
+
"""
|
| 41 |
+
Get model results and parse it
|
| 42 |
+
:param meta: model metadata
|
| 43 |
+
"""
|
| 44 |
+
if "model-index" not in meta:
|
| 45 |
+
return None
|
| 46 |
+
result = meta["model-index"][0]["results"]
|
| 47 |
+
metrics = result[0]["metrics"]
|
| 48 |
+
accuracy = metrics[0]["value"]
|
| 49 |
+
|
| 50 |
+
return accuracy
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def parse_rewards(accuracy):
|
| 54 |
+
"""
|
| 55 |
+
Parse mean_reward and std_reward
|
| 56 |
+
:param accuracy: model results
|
| 57 |
+
"""
|
| 58 |
+
default_std = -1000
|
| 59 |
+
default_reward= -1000
|
| 60 |
+
if accuracy != None:
|
| 61 |
+
accuracy = str(accuracy)
|
| 62 |
+
parsed = accuracy.split(' +/- ')
|
| 63 |
+
if len(parsed)>1:
|
| 64 |
+
mean_reward = float(parsed[0])
|
| 65 |
+
std_reward = float(parsed[1])
|
| 66 |
+
elif len(parsed)==1: #only mean reward
|
| 67 |
+
mean_reward = float(parsed[0])
|
| 68 |
+
std_reward = float(0)
|
| 69 |
+
else:
|
| 70 |
+
mean_reward = float(default_std)
|
| 71 |
+
std_reward = float(default_reward)
|
| 72 |
+
else:
|
| 73 |
+
mean_reward = float(default_std)
|
| 74 |
+
std_reward = float(default_reward)
|
| 75 |
+
|
| 76 |
+
return mean_reward, std_reward
|
| 77 |
+
|
| 78 |
+
def calculate_best_result(user_model_ids):
|
| 79 |
+
"""
|
| 80 |
+
Calculate the best results of a unit
|
| 81 |
+
best_result = mean_reward - std_reward
|
| 82 |
+
:param user_model_ids: RL models of a user
|
| 83 |
+
"""
|
| 84 |
+
best_result = -100
|
| 85 |
+
best_model_id = ""
|
| 86 |
+
for model in user_model_ids:
|
| 87 |
+
meta = get_metadata(model)
|
| 88 |
+
if meta is None:
|
| 89 |
+
continue
|
| 90 |
+
accuracy = parse_metrics_accuracy(meta)
|
| 91 |
+
mean_reward, std_reward = parse_rewards(accuracy)
|
| 92 |
+
result = mean_reward - std_reward
|
| 93 |
+
if result > best_result:
|
| 94 |
+
best_result = result
|
| 95 |
+
best_model_id = model
|
| 96 |
+
|
| 97 |
+
return best_result, best_model_id
|
| 98 |
+
|
| 99 |
+
def check_if_passed(model):
|
| 100 |
+
"""
|
| 101 |
+
Check if result >= baseline
|
| 102 |
+
to know if you pass
|
| 103 |
+
:param model: user model
|
| 104 |
+
"""
|
| 105 |
+
if model["best_result"] >= model["min_result"]:
|
| 106 |
+
model["passed"] = True
|
| 107 |
+
|
| 108 |
+
def test_(hf_username):
|
| 109 |
+
results_certification = [
|
| 110 |
+
{
|
| 111 |
+
"unit": "Unit 1",
|
| 112 |
+
"env": "LunarLander-v2",
|
| 113 |
+
"library": "stable-baselines3",
|
| 114 |
+
"min_result": 200,
|
| 115 |
+
"best_result": 0,
|
| 116 |
+
"best_model_id": "",
|
| 117 |
+
"passed": False
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"unit": "Unit 2",
|
| 121 |
+
"env": "Taxi-v3",
|
| 122 |
+
"library": "q-learning",
|
| 123 |
+
"min_result": 4,
|
| 124 |
+
"best_result": 0,
|
| 125 |
+
"best_model_id": "",
|
| 126 |
+
"passed": False
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"unit": "Unit 3",
|
| 130 |
+
"env": "SpaceInvadersNoFrameskip-v4",
|
| 131 |
+
"library": "stable-baselines3",
|
| 132 |
+
"min_result": 200,
|
| 133 |
+
"best_result": 0,
|
| 134 |
+
"best_model_id": "",
|
| 135 |
+
"passed": False
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"unit": "Unit 4",
|
| 139 |
+
"env": "CartPole-v1",
|
| 140 |
+
"library": "reinforce",
|
| 141 |
+
"min_result": 350,
|
| 142 |
+
"best_result": 0,
|
| 143 |
+
"best_model_id": "",
|
| 144 |
+
"passed": False
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"unit": "Unit 4",
|
| 148 |
+
"env": "Pixelcopter-PLE-v0",
|
| 149 |
+
"library": "reinforce",
|
| 150 |
+
"min_result": 5,
|
| 151 |
+
"best_result": 0,
|
| 152 |
+
"best_model_id": "",
|
| 153 |
+
"passed": False
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"unit": "Unit 5",
|
| 157 |
+
"env": "ML-Agents-SnowballTarget",
|
| 158 |
+
"library": "ml-agents",
|
| 159 |
+
"min_result": -100,
|
| 160 |
+
"best_result": 0,
|
| 161 |
+
"best_model_id": "",
|
| 162 |
+
"passed": False
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
"unit": "Unit 5",
|
| 166 |
+
"env": "ML-Agents-Pyramids",
|
| 167 |
+
"library": "ml-agents",
|
| 168 |
+
"min_result": -100,
|
| 169 |
+
"best_result": 0,
|
| 170 |
+
"best_model_id": "",
|
| 171 |
+
"passed": False
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"unit": "Unit 6",
|
| 175 |
+
"env": "AntBulletEnv-v0",
|
| 176 |
+
"library": "stable-baselines3",
|
| 177 |
+
"min_result": 650,
|
| 178 |
+
"best_result": 0,
|
| 179 |
+
"best_model_id": "",
|
| 180 |
+
"passed": False
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"unit": "Unit 6",
|
| 184 |
+
"env": "PandaReachDense-v2",
|
| 185 |
+
"library": "stable-baselines3",
|
| 186 |
+
"min_result": -3.5,
|
| 187 |
+
"best_result": 0,
|
| 188 |
+
"best_model_id": "",
|
| 189 |
+
"passed": False
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"unit": "Unit 7",
|
| 193 |
+
"env": "ML-Agents-SoccerTwos",
|
| 194 |
+
"library": "ml-agents",
|
| 195 |
+
"min_result": -100,
|
| 196 |
+
"best_result": 0,
|
| 197 |
+
"best_model_id": "",
|
| 198 |
+
"passed": False
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"unit": "Unit 8 Part 1",
|
| 202 |
+
"env": "GodotRL-JumperHard",
|
| 203 |
+
"library": "cleanrl",
|
| 204 |
+
"min_result": -100,
|
| 205 |
+
"best_result": 0,
|
| 206 |
+
"best_model_id": "",
|
| 207 |
+
"passed": False
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"unit": "Unit 8 Part 2",
|
| 211 |
+
"env": "Vizdoom-Battle",
|
| 212 |
+
"library": "cleanrl",
|
| 213 |
+
"min_result": -100,
|
| 214 |
+
"best_result": 0,
|
| 215 |
+
"best_model_id": "",
|
| 216 |
+
"passed": False
|
| 217 |
+
},
|
| 218 |
+
]
|
| 219 |
+
for unit in results_certification:
|
| 220 |
+
# Get user model
|
| 221 |
+
user_models = get_user_models(hf_username, unit['env'], unit['library'])
|
| 222 |
+
print(user_models)
|
| 223 |
+
# Calculate the best result and get the best_model_id
|
| 224 |
+
best_result, best_model_id = calculate_best_result(user_models)
|
| 225 |
+
|
| 226 |
+
# Save best_result and best_model_id
|
| 227 |
+
unit["best_result"] = best_result
|
| 228 |
+
unit["best_model_id"] = make_clickable_model(best_model_id)
|
| 229 |
+
|
| 230 |
+
# Based on best_result do we pass the unit?
|
| 231 |
+
check_if_passed(unit)
|
| 232 |
+
#pass_emoji(unit["passed"])
|
| 233 |
+
|
| 234 |
+
print(results_certification)
|
| 235 |
+
|
| 236 |
+
df = pd.DataFrame (results_certification)
|
| 237 |
+
|
| 238 |
+
return df
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
with gr.Blocks() as demo:
|
| 242 |
+
gr.Markdown(f"""
|
| 243 |
+
# 🏆 Check your progress in the Deep Reinforcement Learning Course 🏆
|
| 244 |
+
You can check your progress here.
|
| 245 |
+
|
| 246 |
+
- To get a certificate of completion, you must **pass 80% of the assignments before the end of April 2023**.
|
| 247 |
+
- To get an honors certificate, you must **pass 100% of the assignments before the end of April 2023**.
|
| 248 |
+
|
| 249 |
+
To pass an assignment your model result (mean_reward - std_reward) must be >= min_result
|
| 250 |
+
|
| 251 |
+
**When min_result = -100 it means that you just need to push a model to pass this hands-on. No need to reach a certain result.**
|
| 252 |
+
|
| 253 |
+
Just type your Hugging Face Username 🤗 (in my case ThomasSimonini)
|
| 254 |
+
""")
|
| 255 |
+
|
| 256 |
+
hf_username = gr.Textbox(placeholder="ThomasSimonini", label="Your Hugging Face Username")
|
| 257 |
+
#email = gr.Textbox(placeholder="[email protected]", label="Your Email (to receive your certificate)")
|
| 258 |
+
check_progress_button = gr.Button(value="Check my progress")
|
| 259 |
+
output = gr.components.Dataframe(value= test_(hf_username), headers=["Unit", "Environment", "Library", "Baseline", "Your best result", "Your best model id", "Pass?"], datatype=["markdown", "markdown", "markdown", "number", "number", "markdown", "bool"])
|
| 260 |
+
check_progress_button.click(fn=test_, inputs=hf_username, outputs=output)
|
| 261 |
+
|
| 262 |
+
demo.launch()
|