File size: 2,163 Bytes
7ea733c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# src/model_loader.py
import os
import math
import torch
from transformers import AutoModel, AutoTokenizer, AutoConfig
from huggingface_hub import snapshot_download

MODEL_NAME = "OpenGVLab/InternVL3-14B"
CACHE_DIR = "/data/internvl3_model"

# === 自动分配模型层到多张 GPU(InternVL3 建议方式) ===
def split_model(model_path):
    device_map = {}
    world_size = torch.cuda.device_count()
    config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
    num_layers = config.llm_config.num_hidden_layers

    num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
    num_layers_per_gpu = [num_layers_per_gpu] * world_size
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)

    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for _ in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1

    # 固定组件放在 GPU 0
    for key in [
        'vision_model', 'mlp1',
        'language_model.model.tok_embeddings',
        'language_model.model.embed_tokens',
        'language_model.output',
        'language_model.model.norm',
        'language_model.model.rotary_emb',
        'language_model.lm_head',
        f'language_model.model.layers.{num_layers - 1}'
    ]:
        device_map[key] = 0

    return device_map

# === 模型加载函数 ===
def load_model():
    if not os.path.exists(CACHE_DIR):
        print("⏬ First run: downloading model to persistent storage...")
        snapshot_download(repo_id=MODEL_NAME, local_dir=CACHE_DIR)
    else:
        print("✅ Loaded model from persistent cache.")

    device_map = split_model(CACHE_DIR)
    tokenizer = AutoTokenizer.from_pretrained(CACHE_DIR, trust_remote_code=True)
    model = AutoModel.from_pretrained(
        CACHE_DIR,
        torch_dtype=torch.bfloat16,
        low_cpu_mem_usage=True,
        use_flash_attn=False,  # 或者True,如果确认安装好FlashAttention
        trust_remote_code=True,
        device_map=device_map
    ).eval()

    return tokenizer, model