Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,66 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import spaces
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
model_id = "google/gemma-3-27b-it"
|
7 |
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
@spaces.GPU
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
gr.Interface(
|
20 |
-
fn=
|
21 |
-
inputs=gr.
|
22 |
-
outputs=gr.Textbox(label="
|
23 |
-
title="Gemma-3-27B
|
|
|
24 |
).launch()
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import spaces
|
4 |
+
import torch
|
5 |
+
import tempfile
|
6 |
+
import imageio
|
7 |
+
from decord import VideoReader, cpu
|
8 |
+
from transformers import pipeline
|
9 |
|
|
|
10 |
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
11 |
+
model_id = "google/gemma-3-27b-it"
|
12 |
+
NUM_FRAMES = 8
|
13 |
+
|
14 |
+
# 从视频中采样 N 帧
|
15 |
+
def sample_video_frames(video_path, num_frames=NUM_FRAMES):
|
16 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
17 |
+
total_frames = len(vr)
|
18 |
+
indices = [int(i) for i in torch.linspace(0, total_frames - 1, steps=num_frames)]
|
19 |
+
frames = [vr[i].asnumpy() for i in indices]
|
20 |
+
pil_frames = [imageio.core.util.Array(frame) for frame in frames]
|
21 |
+
return pil_frames
|
22 |
|
23 |
+
# 推理函数:加载模型、采样视频帧、推理
|
24 |
@spaces.GPU
|
25 |
+
def analyze_video(video_file):
|
26 |
+
# 从上传的视频中采样图像帧
|
27 |
+
frames = sample_video_frames(video_file.name)
|
28 |
+
|
29 |
+
# 构造单轮 prompt(可改为你需要的评估内容)
|
30 |
+
system_prompt = (
|
31 |
+
"You are a helpful AI assistant that analyzes AR effects in videos. "
|
32 |
+
"Evaluate the realism and placement of virtual objects in the provided video frames."
|
33 |
+
)
|
34 |
+
user_prompt = "Based on the frames, describe how well the AR objects blend into the real environment."
|
35 |
+
|
36 |
+
# 构造输入对话历史(含图像)
|
37 |
+
history = [
|
38 |
+
{
|
39 |
+
"role": "system",
|
40 |
+
"content": [{"type": "text", "text": system_prompt}]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"role": "user",
|
44 |
+
"content": [{"type": "text", "text": user_prompt}] + [{"type": "image", "image": frame} for frame in frames]
|
45 |
+
}
|
46 |
+
]
|
47 |
+
|
48 |
+
# 调用 pipeline 推理
|
49 |
+
pipe = pipeline(
|
50 |
+
"image-text-to-text",
|
51 |
+
model=model_id,
|
52 |
+
token=hf_token,
|
53 |
+
torch_dtype=torch.bfloat16,
|
54 |
+
model_kwargs={"device_map": "auto"}
|
55 |
+
)
|
56 |
+
result = pipe(text=history, max_new_tokens=512)
|
57 |
+
return result[0]["generated_text"][-1]["content"]
|
58 |
|
59 |
+
# Gradio 界面
|
60 |
gr.Interface(
|
61 |
+
fn=analyze_video,
|
62 |
+
inputs=gr.Video(label="Upload an AR Video (.mp4 only)"),
|
63 |
+
outputs=gr.Textbox(label="Gemma Analysis Result"),
|
64 |
+
title="Gemma-3-27B Video Analysis (ZeroGPU)",
|
65 |
+
description="Uploads a video, extracts 8 frames, and uses Gemma-3-27B to analyze AR realism."
|
66 |
).launch()
|