Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,20 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
from transformers import AutoTokenizer, AutoModel, AutoProcessor
|
4 |
-
import gradio as gr
|
5 |
-
from PIL import Image
|
6 |
|
7 |
-
|
8 |
-
def split_model(model_path):
|
9 |
-
from transformers import AutoConfig
|
10 |
-
device_map = {}
|
11 |
-
world_size = torch.cuda.device_count()
|
12 |
-
print(f"world_size:{world_size}")
|
13 |
-
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
14 |
-
num_layers = config.llm_config.num_hidden_layers
|
15 |
-
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
16 |
-
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
17 |
-
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
|
18 |
-
layer_cnt = 0
|
19 |
-
for i, num_layer in enumerate(num_layers_per_gpu):
|
20 |
-
for _ in range(num_layer):
|
21 |
-
device_map[f'language_model.model.layers.{layer_cnt}'] = i
|
22 |
-
layer_cnt += 1
|
23 |
-
device_map['vision_model'] = 0
|
24 |
-
device_map['mlp1'] = 0
|
25 |
-
device_map['language_model.model.tok_embeddings'] = 0
|
26 |
-
device_map['language_model.model.embed_tokens'] = 0
|
27 |
-
device_map['language_model.output'] = 0
|
28 |
-
device_map['language_model.model.norm'] = 0
|
29 |
-
device_map['language_model.model.rotary_emb'] = 0
|
30 |
-
device_map['language_model.lm_head'] = 0
|
31 |
-
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
32 |
-
return device_map
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
device_map
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
torch_dtype=torch.bfloat16,
|
42 |
-
low_cpu_mem_usage=True,
|
43 |
-
use_flash_attn=True,
|
44 |
-
trust_remote_code=True,
|
45 |
-
device_map=device_map
|
46 |
-
).eval()
|
47 |
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
49 |
-
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
50 |
-
|
51 |
-
# === ζ¨ηε½ζ° ===
|
52 |
-
def infer(image: Image.Image, prompt: str):
|
53 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
|
54 |
-
output = model.generate(**inputs, max_new_tokens=512)
|
55 |
-
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
56 |
-
return answer
|
57 |
-
|
58 |
-
# === Gradio ηι’ ===
|
59 |
gr.Interface(
|
60 |
-
fn=
|
61 |
-
inputs=
|
62 |
-
|
63 |
-
|
64 |
-
],
|
65 |
-
outputs="text",
|
66 |
-
title="InternVL3-14B Multimodal Demo",
|
67 |
-
description="Upload an image and ask a question. InternVL3-14B will answer using vision + language."
|
68 |
-
).launch()
|
|
|
1 |
+
import spaces
|
2 |
+
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
3 |
|
4 |
+
model_id = "google/gemma-3-27b-it"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
pipe = DiffusionPipeline.from_pretrained(
|
7 |
+
model_id,
|
8 |
+
device_map="auto"
|
9 |
+
)
|
10 |
+
pipe.to('cuda')
|
11 |
|
12 |
+
@spaces.GPU
|
13 |
+
def generate(prompt):
|
14 |
+
return pipe(prompt).images
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
gr.Interface(
|
17 |
+
fn=generate,
|
18 |
+
inputs=gr.Text(),
|
19 |
+
outputs=gr.Gallery(),
|
20 |
+
).launch()
|
|
|
|
|
|
|
|
|
|