test_move_text / app.py
LouisLi's picture
Update app.py
5d93f29 verified
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
html_content = """
<p id="sourceText" style="width: 400px; padding: 10px; border: 1px solid #000;" onmouseup="selectText()">
这是一个可拖动文本的示例。选择这段话中的部分文字并拖动到下方的文本框中作为标签。
</p>
<div id="dropzone" ondrop="drop(event)" ondragover="allowDrop(event)" style="width: 400px; height: 200px; border: 1px solid #000; margin-top: 20px;">
将选中的文字拖动到这里
</div>
<script>
let selectedText = '';
function selectText() {
const selection = window.getSelection();
selectedText = selection.toString();
if (selectedText) {
const span = document.createElement('span');
span.textContent = selectedText;
span.setAttribute('draggable', true);
span.setAttribute('ondragstart', 'drag(event)');
selection.removeAllRanges();
selection.anchorNode.parentElement.insertBefore(span, selection.anchorNode.nextSibling);
}
}
function allowDrop(event) {
event.preventDefault();
}
function drag(event) {
event.dataTransfer.setData("text/plain", event.target.textContent);
}
function drop(event) {
event.preventDefault();
const data = event.dataTransfer.getData("text/plain");
const tag = document.createElement('div');
tag.textContent = data;
tag.style.border = '1px solid #000';
tag.style.padding = '5px';
tag.style.margin = '5px';
event.target.appendChild(tag);
}
</script>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
gr.HTML(html_content)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result]
)
# 自定义HTML和JavaScript
demo.queue().launch()