Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 5 |
+
from torch.utils.data import Dataset, DataLoader
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.optim as optim
|
| 9 |
+
from sklearn.metrics import f1_score
|
| 10 |
+
|
| 11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def set_seed(seed_value=30):
|
| 15 |
+
"""Set seed for reproducibility."""
|
| 16 |
+
random.seed(seed_value) # Python random module
|
| 17 |
+
np.random.seed(seed_value) # Numpy module
|
| 18 |
+
torch.manual_seed(seed_value) # Torch
|
| 19 |
+
torch.cuda.manual_seed_all(seed_value) # if you are using multi-GPU.
|
| 20 |
+
torch.backends.cudnn.deterministic = True # CUDNN determinism
|
| 21 |
+
torch.backends.cudnn.benchmark = False
|
| 22 |
+
|
| 23 |
+
# Example usage
|
| 24 |
+
set_seed(30)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Load your dataset
|
| 28 |
+
data_path = 'final_dataset.csv' # Update this path to where your data is stored in Colab
|
| 29 |
+
data = pd.read_csv(data_path)
|
| 30 |
+
|
| 31 |
+
# Set up the device for GPU usage
|
| 32 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
+
|
| 34 |
+
# Load the model and tokenizer
|
| 35 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
| 36 |
+
model = T5ForConditionalGeneration.from_pretrained('t5-small')
|
| 37 |
+
model.to(device)
|
| 38 |
+
model.eval()
|
| 39 |
+
|
| 40 |
+
# Function to generate summaries
|
| 41 |
+
def generate_summaries(texts, model, tokenizer, device, max_length=150):
|
| 42 |
+
summaries = []
|
| 43 |
+
for text in texts:
|
| 44 |
+
encoded_text = tokenizer.encode("summarize: " + text, return_tensors='pt', max_length=512, truncation=True).to(device)
|
| 45 |
+
summary_ids = model.generate(encoded_text, max_length=max_length, num_beams=4, early_stopping=True)
|
| 46 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 47 |
+
summaries.append(summary)
|
| 48 |
+
return summaries
|
| 49 |
+
|
| 50 |
+
# Split the data into chunks to manage memory more effectively (if needed)
|
| 51 |
+
chunk_size = 10 # Adjust chunk size based on your dataset size and memory constraints
|
| 52 |
+
num_chunks = len(data) // chunk_size + (1 if len(data) % chunk_size != 0 else 0)
|
| 53 |
+
|
| 54 |
+
all_summaries = []
|
| 55 |
+
for i in range(num_chunks):
|
| 56 |
+
batch = data['Content'][i * chunk_size:(i + 1) * chunk_size]
|
| 57 |
+
batch_summaries = generate_summaries(batch, model, tokenizer, device)
|
| 58 |
+
all_summaries.extend(batch_summaries)
|
| 59 |
+
|
| 60 |
+
# Add summaries to the DataFrame
|
| 61 |
+
data['Summary'] = all_summaries
|
| 62 |
+
|
| 63 |
+
# Save the DataFrame with summaries to a new CSV file
|
| 64 |
+
output_path = '/content/summarized_data.csv'
|
| 65 |
+
data.to_csv(output_path, index=False)
|
| 66 |
+
print(f"Data with summaries saved to {output_path}")
|
| 67 |
+
|
| 68 |
+
class PolicyDataset(Dataset):
|
| 69 |
+
def __init__(self, data, tokenizer, max_input_length=512, max_target_length=128):
|
| 70 |
+
self.data = data
|
| 71 |
+
self.tokenizer = tokenizer
|
| 72 |
+
self.max_input_length = max_input_length
|
| 73 |
+
self.max_target_length = max_target_length
|
| 74 |
+
|
| 75 |
+
def __len__(self):
|
| 76 |
+
return len(self.data)
|
| 77 |
+
|
| 78 |
+
def __getitem__(self, idx):
|
| 79 |
+
policy_text = self.data.iloc[idx]['Content']
|
| 80 |
+
summary_text = self.data.iloc[idx]['Summary']
|
| 81 |
+
|
| 82 |
+
input_encoding = self.tokenizer.encode_plus(
|
| 83 |
+
policy_text,
|
| 84 |
+
max_length=self.max_input_length,
|
| 85 |
+
padding='max_length',
|
| 86 |
+
truncation=True,
|
| 87 |
+
return_tensors='pt'
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
target_encoding = self.tokenizer.encode_plus(
|
| 91 |
+
summary_text,
|
| 92 |
+
max_length=self.max_target_length,
|
| 93 |
+
padding='max_length',
|
| 94 |
+
truncation=True,
|
| 95 |
+
return_tensors='pt'
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
return {
|
| 99 |
+
'input_ids': input_encoding['input_ids'].squeeze(),
|
| 100 |
+
'attention_mask': input_encoding['attention_mask'].squeeze(),
|
| 101 |
+
'labels': target_encoding['input_ids'].squeeze(),
|
| 102 |
+
'labels_mask': target_encoding['attention_mask'].squeeze()
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
data = pd.read_csv('summarized_data.csv') # Ensure this points to your CSV file
|
| 106 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
| 107 |
+
model = T5ForConditionalGeneration.from_pretrained('t5-small').to(device)
|
| 108 |
+
|
| 109 |
+
# Prepare data splits and loaders
|
| 110 |
+
train_data, eval_data = train_test_split(data, test_size=0.1, random_state=42)
|
| 111 |
+
train_dataset = PolicyDataset(train_data, tokenizer)
|
| 112 |
+
eval_dataset = PolicyDataset(eval_data, tokenizer)
|
| 113 |
+
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
|
| 114 |
+
eval_loader = DataLoader(eval_dataset, batch_size=16, shuffle=False)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def train(model, train_loader, optimizer, criterion, device):
|
| 118 |
+
model.train()
|
| 119 |
+
total_loss = 0
|
| 120 |
+
for batch in train_loader:
|
| 121 |
+
optimizer.zero_grad()
|
| 122 |
+
|
| 123 |
+
input_ids = batch['input_ids'].to(device)
|
| 124 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 125 |
+
labels = batch['labels'].to(device) # Labels should be of the shape [batch_size, seq_length]
|
| 126 |
+
|
| 127 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
| 128 |
+
logits = outputs.logits # Output logits are typically [batch_size, seq_length, vocab_size]
|
| 129 |
+
|
| 130 |
+
# Reshape labels to match the output logits dimensions if needed
|
| 131 |
+
# labels should be [batch_size * seq_length] when passed to CrossEntropyLoss
|
| 132 |
+
loss = criterion(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 133 |
+
loss.backward()
|
| 134 |
+
optimizer.step()
|
| 135 |
+
|
| 136 |
+
total_loss += loss.item()
|
| 137 |
+
|
| 138 |
+
return total_loss / len(train_loader)
|
| 139 |
+
|
| 140 |
+
def evaluate(model, eval_loader, criterion, device):
|
| 141 |
+
model.eval()
|
| 142 |
+
total_loss = 0
|
| 143 |
+
all_predictions = []
|
| 144 |
+
all_labels = []
|
| 145 |
+
with torch.no_grad():
|
| 146 |
+
for batch in eval_loader:
|
| 147 |
+
input_ids = batch['input_ids'].to(device)
|
| 148 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 149 |
+
labels = batch['labels'].to(device)
|
| 150 |
+
|
| 151 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
| 152 |
+
logits = outputs.logits
|
| 153 |
+
|
| 154 |
+
# Calculate loss
|
| 155 |
+
loss = criterion(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 156 |
+
total_loss += loss.item()
|
| 157 |
+
|
| 158 |
+
# Calculate F1 score
|
| 159 |
+
predictions = torch.argmax(logits, dim=-1).flatten().cpu().numpy()
|
| 160 |
+
labels_flat = labels.flatten().cpu().numpy()
|
| 161 |
+
valid_indices = labels_flat != -100
|
| 162 |
+
valid_predictions = predictions[valid_indices]
|
| 163 |
+
valid_labels = labels_flat[valid_indices]
|
| 164 |
+
all_predictions.extend(valid_predictions)
|
| 165 |
+
all_labels.extend(valid_labels)
|
| 166 |
+
|
| 167 |
+
f1 = f1_score(all_labels, all_predictions, average='macro')
|
| 168 |
+
return total_loss / len(eval_loader), f1
|
| 169 |
+
|
| 170 |
+
optimizer = optim.AdamW(model.parameters(), lr=5e-5)
|
| 171 |
+
criterion = nn.CrossEntropyLoss()
|
| 172 |
+
|
| 173 |
+
# Training loop
|
| 174 |
+
for epoch in range(5): # Adjust the number of epochs as needed
|
| 175 |
+
train_loss = train(model, train_loader, optimizer, criterion, device)
|
| 176 |
+
eval_loss, eval_f1 = evaluate(model, eval_loader, criterion, device)
|
| 177 |
+
print(f"Epoch {epoch + 1}: Train Loss = {train_loss:.4f}, Eval Loss = {eval_loss:.4f}, Eval F1 = {eval_f1:.4f}")
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# Function to run training
|
| 181 |
+
def run_training(lr, batch_size, number_of_epochs=5):
|
| 182 |
+
model = T5ForConditionalGeneration.from_pretrained('t5-small').to(device)
|
| 183 |
+
model.train()
|
| 184 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
| 185 |
+
optimizer = optim.AdamW(model.parameters(), lr=lr)
|
| 186 |
+
criterion = torch.nn.CrossEntropyLoss()
|
| 187 |
+
|
| 188 |
+
# Training loop
|
| 189 |
+
for epoch in range(number_of_epochs):
|
| 190 |
+
train_loss = train(model, train_loader, optimizer, criterion, device)
|
| 191 |
+
eval_loss, eval_f1 = evaluate(model, eval_loader, criterion, device)
|
| 192 |
+
print(f"LR: {lr}, Batch size: {batch_size}, Epoch: {epoch+1}, Train Loss: {train_loss:.4f}, Eval Loss: {eval_loss:.4f}, Eval F1: {eval_f1:.4f}")
|
| 193 |
+
|
| 194 |
+
# Define hyperparameters to test
|
| 195 |
+
learning_rates = [1e-5, 3e-5, 5e-5]
|
| 196 |
+
batch_sizes = [16, 32, 64]
|
| 197 |
+
|
| 198 |
+
# Run grid search
|
| 199 |
+
for lr in learning_rates:
|
| 200 |
+
for batch_size in batch_sizes:
|
| 201 |
+
run_training(lr, batch_size, number_of_epochs=5) # Specify the number of epochs here
|
| 202 |
+
|
| 203 |
+
|