Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,57 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import re
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
lore_data[filename] = file.read()
|
10 |
-
return lore_data
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
# Функция для очистки текста от нежелательных символов
|
15 |
def clean_text(text):
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
)
|
53 |
|
54 |
-
|
55 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
import re
|
4 |
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.llms import HuggingFaceHub
|
|
|
|
|
10 |
|
11 |
+
# Убираем спецсимволы (кроме базовой пунктуации)
|
|
|
|
|
12 |
def clean_text(text):
|
13 |
+
return re.sub(r"[^\w\s.,!?–—:;()«»\"'-]", "", text, flags=re.UNICODE)
|
14 |
+
|
15 |
+
# Собираем весь лор из нескольких файлов
|
16 |
+
def load_all_lore_texts(folder="."):
|
17 |
+
texts = []
|
18 |
+
for filename in os.listdir(folder):
|
19 |
+
if filename.startswith("lore") and filename.endswith(".txt"):
|
20 |
+
with open(os.path.join(folder, filename), "r", encoding="utf-8") as f:
|
21 |
+
content = clean_text(f.read())
|
22 |
+
texts.append(content)
|
23 |
+
return "\n".join(texts)
|
24 |
+
|
25 |
+
# Загрузка и разбиение текста
|
26 |
+
full_lore = load_all_lore_texts()
|
27 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
28 |
+
chunks = splitter.split_text(full_lore)
|
29 |
+
|
30 |
+
# Векторизация
|
31 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") # поддерживает русский
|
32 |
+
db = FAISS.from_texts(chunks, embeddings)
|
33 |
+
retriever = db.as_retriever()
|
34 |
+
|
35 |
+
# Русскоязычная LLM
|
36 |
+
llm = HuggingFaceHub(
|
37 |
+
repo_id="cointegrated/rugpt3large_based_on_gpt2",
|
38 |
+
model_kwargs={"temperature":0.6, "max_new_tokens":300}
|
39 |
+
)
|
40 |
+
|
41 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
42 |
+
|
43 |
+
# Ответ бота
|
44 |
+
def ask_bot(question):
|
45 |
+
cleaned_question = clean_text(question)
|
46 |
+
return qa_chain.run(cleaned_question)
|
47 |
+
|
48 |
+
# Интерфейс
|
49 |
+
iface = gr.Interface(
|
50 |
+
fn=ask_bot,
|
51 |
+
inputs=gr.Textbox(lines=2, placeholder="Спроси что-нибудь по лору..."),
|
52 |
+
outputs="text",
|
53 |
+
title="ЛорБот",
|
54 |
+
description="Задавайте вопросы о вселенной. Поддерживается русский язык."
|
55 |
)
|
56 |
|
57 |
+
iface.launch()
|
|