Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,117 +1,168 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
-
|
5 |
-
from
|
6 |
-
|
7 |
-
from
|
8 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
-
import warnings
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
#
|
21 |
-
def
|
|
|
|
|
22 |
try:
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
raise ImportError(
|
29 |
-
f"❌ Не хватает пакетов. Убедитесь, что requirements.txt содержит:\n"
|
30 |
-
f"- sentence-transformers\n- torch\n- transformers\n\n"
|
31 |
-
f"Ошибка: {str(e)}"
|
32 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
#
|
35 |
-
def
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
print(f"⚠ Ошибка в файле {file}: {str(e)}")
|
48 |
-
return docs
|
49 |
-
|
50 |
-
# 3. Инициализация модели эмбеддингов
|
51 |
-
def get_embeddings():
|
52 |
-
try:
|
53 |
-
return HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL)
|
54 |
-
except Exception as e:
|
55 |
-
raise RuntimeError(f"Ошибка инициализации эмбеддингов: {str(e)}")
|
56 |
-
|
57 |
-
# 4. Основная логика
|
58 |
-
def setup_qa_system():
|
59 |
-
check_dependencies()
|
60 |
-
|
61 |
-
# Загрузка и обработка документов
|
62 |
-
documents = load_docs()
|
63 |
-
if not documents:
|
64 |
-
raise ValueError("Нет документов для обработки!")
|
65 |
-
|
66 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
67 |
-
chunk_size=300,
|
68 |
-
chunk_overlap=30,
|
69 |
-
separators=["\n\n", "\n", " ", ""]
|
70 |
)
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
repo_id=LLM_REPO,
|
80 |
-
huggingfacehub_api_token=HF_TOKEN,
|
81 |
-
model_kwargs={
|
82 |
-
"temperature": 0.2,
|
83 |
-
"max_length": 300
|
84 |
-
}
|
85 |
)
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
|
|
|
|
93 |
|
94 |
-
#
|
95 |
-
def answer_question(question):
|
|
|
96 |
try:
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
#
|
108 |
-
with gr.Blocks(
|
109 |
-
gr.Markdown("##
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import chromadb
|
4 |
+
from chromadb.utils import embedding_functions
|
5 |
+
import os
|
6 |
+
from langdetect import detect
|
|
|
|
|
7 |
|
8 |
+
# Проверяем наличие текстовых файлов и читаем их
|
9 |
+
def load_text_files():
|
10 |
+
files = {
|
11 |
+
"vampires": "vampires.txt",
|
12 |
+
"werewolves": "werewolves.txt",
|
13 |
+
"humans": "humans.txt"
|
14 |
+
}
|
15 |
+
|
16 |
+
loaded_data = {}
|
17 |
+
for key, filename in files.items():
|
18 |
+
try:
|
19 |
+
with open(filename, 'r', encoding='utf-8') as file:
|
20 |
+
loaded_data[key] = file.read()
|
21 |
+
except FileNotFoundError:
|
22 |
+
print(f"Файл {filename} не найден")
|
23 |
+
loaded_data[key] = ""
|
24 |
+
|
25 |
+
return loaded_data
|
26 |
|
27 |
+
# Инициализация модели для эмбеддингов
|
28 |
+
def initialize_embedding_model():
|
29 |
+
return embedding_functions.SentenceTransformerEmbeddingFunction(
|
30 |
+
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
31 |
+
)
|
32 |
|
33 |
+
# Создание базы знаний
|
34 |
+
def create_knowledge_base(text_data, embed_fn):
|
35 |
+
client = chromadb.Client()
|
36 |
+
|
37 |
try:
|
38 |
+
collection = client.get_collection(name="knowledge_base")
|
39 |
+
except:
|
40 |
+
collection = client.create_collection(
|
41 |
+
name="knowledge_base",
|
42 |
+
embedding_function=embed_fn
|
|
|
|
|
|
|
|
|
43 |
)
|
44 |
+
|
45 |
+
# Добавляем документы в коллекцию
|
46 |
+
documents = []
|
47 |
+
metadatas = []
|
48 |
+
ids = []
|
49 |
+
|
50 |
+
for category, text in text_data.items():
|
51 |
+
if text: # только если текст не пустой
|
52 |
+
# Разбиваем текст на предложения или абзацы
|
53 |
+
paragraphs = [p for p in text.split('\n') if p.strip()]
|
54 |
+
|
55 |
+
for i, paragraph in enumerate(paragraphs):
|
56 |
+
documents.append(paragraph)
|
57 |
+
metadatas.append({"category": category})
|
58 |
+
ids.append(f"{category}_{i}")
|
59 |
+
|
60 |
+
if documents:
|
61 |
+
collection.add(
|
62 |
+
documents=documents,
|
63 |
+
metadatas=metadatas,
|
64 |
+
ids=ids
|
65 |
+
)
|
66 |
+
|
67 |
+
return collection
|
68 |
|
69 |
+
# Инициализация модели для ответов
|
70 |
+
def initialize_llm_model():
|
71 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
72 |
+
|
73 |
+
model_name = "IlyaGusev/saiga_mistral_7b"
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
75 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
76 |
+
|
77 |
+
pipe = pipeline(
|
78 |
+
"text-generation",
|
79 |
+
model=model,
|
80 |
+
tokenizer=tokenizer,
|
81 |
+
device="cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
83 |
+
|
84 |
+
return pipe
|
85 |
+
|
86 |
+
# Поиск релевантной информации
|
87 |
+
def find_relevant_info(question, collection, embed_fn, n_results=3):
|
88 |
+
results = collection.query(
|
89 |
+
query_texts=[question],
|
90 |
+
n_results=n_results
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
)
|
92 |
|
93 |
+
context = "\n\n".join(results['documents'][0])
|
94 |
+
return context
|
95 |
+
|
96 |
+
# Генерация ответа
|
97 |
+
def generate_response(question, context, llm_pipe):
|
98 |
+
system_prompt = """Ты - помощник, который отвечает на вопросы пользователя, используя предоставленную информацию.
|
99 |
+
Отвечай только на основе предоставленного контекста. Если ответа нет в контексте, скажи, что не знаешь.
|
100 |
+
Отвечай на русском языке."""
|
101 |
+
|
102 |
+
prompt = f"""<s>{system_prompt}
|
103 |
+
Контекст: {context}
|
104 |
+
Вопрос: {question}
|
105 |
+
Ответ:"""
|
106 |
+
|
107 |
+
output = llm_pipe(
|
108 |
+
prompt,
|
109 |
+
max_new_tokens=512,
|
110 |
+
do_sample=True,
|
111 |
+
temperature=0.7,
|
112 |
+
top_p=0.9,
|
113 |
+
repetition_penalty=1.2,
|
114 |
+
eos_token_id=2
|
115 |
)
|
116 |
+
|
117 |
+
return output[0]["generated_text"][len(prompt):].strip()
|
118 |
|
119 |
+
# Основная функция для обработки запросов
|
120 |
+
def answer_question(question, history):
|
121 |
+
# Определяем язык вопроса
|
122 |
try:
|
123 |
+
lang = detect(question)
|
124 |
+
if lang != 'ru':
|
125 |
+
return "Пожалуйста, задавайте вопросы на русском языке."
|
126 |
+
except:
|
127 |
+
pass
|
128 |
+
|
129 |
+
# Загружаем данные (если еще не загружены)
|
130 |
+
if not hasattr(answer_question, 'text_data'):
|
131 |
+
answer_question.text_data = load_text_files()
|
132 |
+
|
133 |
+
# Инициализируем модели (если еще не инициализированы)
|
134 |
+
if not hasattr(answer_question, 'embed_fn'):
|
135 |
+
answer_question.embed_fn = initialize_embedding_model()
|
136 |
+
|
137 |
+
if not hasattr(answer_question, 'collection'):
|
138 |
+
answer_question.collection = create_knowledge_base(answer_question.text_data, answer_question.embed_fn)
|
139 |
+
|
140 |
+
if not hasattr(answer_question, 'llm_pipe'):
|
141 |
+
answer_question.llm_pipe = initialize_llm_model()
|
142 |
+
|
143 |
+
# Находим релевантный контекст
|
144 |
+
context = find_relevant_info(question, answer_question.collection, answer_question.embed_fn)
|
145 |
+
|
146 |
+
# Генерируем ответ
|
147 |
+
response = generate_response(question, context, answer_question.llm_pipe)
|
148 |
+
|
149 |
+
return response
|
150 |
|
151 |
+
# Создаем интерфейс Gradio
|
152 |
+
with gr.Blocks() as demo:
|
153 |
+
gr.Markdown("## Чат-бот с доступом к текстовым файлам")
|
154 |
+
gr.Markdown("Задавайте вопросы о вампирах, оборотнях или людях на русском языке")
|
155 |
+
|
156 |
+
chatbot = gr.Chatbot(label="Диалог")
|
157 |
+
msg = gr.Textbox(label="Ваш вопрос")
|
158 |
+
clear = gr.Button("Очистить")
|
159 |
+
|
160 |
+
def respond(message, chat_history):
|
161 |
+
bot_message = answer_question(message, chat_history)
|
162 |
+
chat_history.append((message, bot_message))
|
163 |
+
return "", chat_history
|
164 |
+
|
165 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
166 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
167 |
|
168 |
+
demo.launch()
|