Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,73 +3,105 @@ import os
|
|
3 |
from langdetect import detect
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
import numpy as np
|
|
|
6 |
|
7 |
-
# Загрузка текстовых файлов
|
8 |
-
def
|
9 |
files = {
|
10 |
"vampires": "vampires.txt",
|
11 |
"werewolves": "werewolves.txt",
|
12 |
"humans": "humans.txt"
|
13 |
}
|
14 |
|
15 |
-
|
16 |
-
for
|
17 |
try:
|
18 |
with open(filename, 'r', encoding='utf-8') as file:
|
19 |
-
|
|
|
|
|
|
|
20 |
except FileNotFoundError:
|
21 |
print(f"Файл {filename} не найден")
|
22 |
-
|
23 |
|
24 |
-
return
|
25 |
|
26 |
-
# Инициализация модели для поиска
|
27 |
def initialize_search_model():
|
28 |
return SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
29 |
|
30 |
-
# Поиск
|
31 |
-
def
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
# Эмбеддинги для предложений и вопроса
|
46 |
-
sentence_embeddings = model.encode(sentences)
|
47 |
question_embedding = model.encode([question])
|
48 |
|
49 |
-
#
|
50 |
-
similarities = np.dot(
|
51 |
top_indices = similarities.argsort()[-top_k:][::-1]
|
52 |
|
53 |
-
|
54 |
-
context = "Контекст:\n"
|
55 |
-
for idx in top_indices:
|
56 |
-
context += f"[Из {sources[idx]}]: {sentences[idx]}\n"
|
57 |
-
|
58 |
-
return context
|
59 |
-
|
60 |
-
# Генерация ответа (упрощенная)
|
61 |
-
def generate_answer(question, context):
|
62 |
-
# Простейшая логика ответа без LLM
|
63 |
-
if not context.strip():
|
64 |
-
return "Извините, не могу найти информацию по вашему вопросу."
|
65 |
-
|
66 |
-
return f"""На основе имеющейся информации:
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
# Основная функция обработки
|
73 |
def process_question(question, history):
|
74 |
# Проверка языка
|
75 |
try:
|
@@ -79,34 +111,64 @@ def process_question(question, history):
|
|
79 |
pass
|
80 |
|
81 |
# Ленивая загрузка данных и модели
|
82 |
-
if not hasattr(process_question, '
|
83 |
-
process_question.
|
84 |
|
85 |
if not hasattr(process_question, 'search_model'):
|
86 |
process_question.search_model = initialize_search_model()
|
87 |
|
88 |
# Поиск релевантной информации
|
89 |
-
|
90 |
|
91 |
-
#
|
92 |
-
answer =
|
93 |
|
94 |
# Обновление истории
|
95 |
history.append((question, answer))
|
96 |
|
97 |
return "", history
|
98 |
|
99 |
-
# Создание интерфейса
|
100 |
-
with gr.Blocks() as demo:
|
101 |
-
gr.Markdown("
|
102 |
-
gr.Markdown("
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
msg.submit(process_question, [msg, chatbot], [msg, chatbot])
|
109 |
clear.click(lambda: None, None, chatbot, queue=False)
|
110 |
|
111 |
-
# Запуск приложения
|
112 |
-
demo.launch(server_name="0.0.0.0", server_port=7860
|
|
|
3 |
from langdetect import detect
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
import numpy as np
|
6 |
+
import re
|
7 |
|
8 |
+
# Загрузка и предварительная обработка текстовых файлов
|
9 |
+
def load_and_preprocess_files():
|
10 |
files = {
|
11 |
"vampires": "vampires.txt",
|
12 |
"werewolves": "werewolves.txt",
|
13 |
"humans": "humans.txt"
|
14 |
}
|
15 |
|
16 |
+
knowledge_base = {}
|
17 |
+
for category, filename in files.items():
|
18 |
try:
|
19 |
with open(filename, 'r', encoding='utf-8') as file:
|
20 |
+
content = file.read()
|
21 |
+
# Разбиваем на осмысленные блоки (абзацы)
|
22 |
+
paragraphs = [p.strip() for p in content.split('\n\n') if p.strip()]
|
23 |
+
knowledge_base[category] = paragraphs
|
24 |
except FileNotFoundError:
|
25 |
print(f"Файл {filename} не найден")
|
26 |
+
knowledge_base[category] = []
|
27 |
|
28 |
+
return knowledge_base
|
29 |
|
30 |
+
# Инициализация модели для семантического поиска
|
31 |
def initialize_search_model():
|
32 |
return SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
33 |
|
34 |
+
# Поиск релевантной информации с улучшенным ранжированием
|
35 |
+
def find_relevant_info(question, knowledge_base, model, top_k=3):
|
36 |
+
# Собираем все текстовые фрагменты с их категориями
|
37 |
+
all_fragments = []
|
38 |
+
for category, paragraphs in knowledge_base.items():
|
39 |
+
for para in paragraphs:
|
40 |
+
all_fragments.append((para, category))
|
41 |
+
|
42 |
+
if not all_fragments:
|
43 |
+
return []
|
44 |
+
|
45 |
+
# Эмбеддинги для всех фрагментов
|
46 |
+
texts = [f[0] for f in all_fragments]
|
47 |
+
embeddings = model.encode(texts)
|
|
|
|
|
|
|
48 |
question_embedding = model.encode([question])
|
49 |
|
50 |
+
# Вычисляем сходство и выбираем топ фрагментов
|
51 |
+
similarities = np.dot(embeddings, question_embedding.T).flatten()
|
52 |
top_indices = similarities.argsort()[-top_k:][::-1]
|
53 |
|
54 |
+
return [all_fragments[i] for i in top_indices]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Генерация естественного ответа
|
57 |
+
def generate_natural_response(question, relevant_info):
|
58 |
+
if not relevant_info:
|
59 |
+
return "Извините, не нашел информации по вашему вопросу. Попробуйте переформулировать."
|
60 |
+
|
61 |
+
# Определяем тему вопроса
|
62 |
+
question_type = "о них"
|
63 |
+
if "вампир" in question.lower():
|
64 |
+
question_type = "о вампирах"
|
65 |
+
elif "оборотн" in question.lower() or "волколак" in question.lower():
|
66 |
+
question_type = "об оборотнях"
|
67 |
+
elif "человек" in question.lower() or "люди" in question.lower():
|
68 |
+
question_type = "о людях"
|
69 |
+
|
70 |
+
# Собираем уникальную информацию
|
71 |
+
unique_info = []
|
72 |
+
seen = set()
|
73 |
+
for para, category in relevant_info:
|
74 |
+
if para not in seen:
|
75 |
+
unique_info.append((para, category))
|
76 |
+
seen.add(para)
|
77 |
+
|
78 |
+
# Формируем ответ
|
79 |
+
response = f"Вот чт�� мне известно {question_type}:\n\n"
|
80 |
+
|
81 |
+
for i, (para, category) in enumerate(unique_info, 1):
|
82 |
+
# Упрощаем маркированные списки
|
83 |
+
if para.startswith("- "):
|
84 |
+
para = para.replace("\n- ", "\n• ").replace("- ", "• ")
|
85 |
+
|
86 |
+
# Добавляем источник только если есть несколько категорий
|
87 |
+
if len(set(c for _, c in unique_info)) > 1:
|
88 |
+
response += f"{i}. ({category.capitalize()}) {para}\n\n"
|
89 |
+
else:
|
90 |
+
response += f"{i}. {para}\n\n"
|
91 |
+
|
92 |
+
# Добавляем естественное завершение
|
93 |
+
endings = [
|
94 |
+
"Надеюсь, эта информация была полезной!",
|
95 |
+
"Если хотите узнать больше деталей, уточните вопрос.",
|
96 |
+
"Могу уточнить какие-то моменты, если нужно.",
|
97 |
+
"Это основные сведения, которые у меня есть."
|
98 |
+
]
|
99 |
+
|
100 |
+
response += np.random.choice(endings)
|
101 |
+
|
102 |
+
return response
|
103 |
|
104 |
+
# Обработка вопроса с улучшенной логикой
|
|
|
|
|
105 |
def process_question(question, history):
|
106 |
# Проверка языка
|
107 |
try:
|
|
|
111 |
pass
|
112 |
|
113 |
# Ленивая загрузка данных и модели
|
114 |
+
if not hasattr(process_question, 'knowledge_base'):
|
115 |
+
process_question.knowledge_base = load_and_preprocess_files()
|
116 |
|
117 |
if not hasattr(process_question, 'search_model'):
|
118 |
process_question.search_model = initialize_search_model()
|
119 |
|
120 |
# Поиск релевантной информации
|
121 |
+
relevant_info = find_relevant_info(question, process_question.knowledge_base, process_question.search_model)
|
122 |
|
123 |
+
# Генерация ответа
|
124 |
+
answer = generate_natural_response(question, relevant_info)
|
125 |
|
126 |
# Обновление истории
|
127 |
history.append((question, answer))
|
128 |
|
129 |
return "", history
|
130 |
|
131 |
+
# Создание интерфейса с улучшенным дизайном
|
132 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
133 |
+
gr.Markdown("""<h1 style='text-align: center'>🧛♂️ Мир сверхъестественного 🐺</h1>""")
|
134 |
+
gr.Markdown("""<div style='text-align: center'>Задавайте вопросы о вампирах, оборотнях и людях на русском языке</div>""")
|
135 |
+
|
136 |
+
with gr.Row():
|
137 |
+
with gr.Column(scale=2):
|
138 |
+
chatbot = gr.Chatbot(
|
139 |
+
label="Диалог",
|
140 |
+
bubble_full_width=False,
|
141 |
+
avatar_images=(
|
142 |
+
"https://i.imgur.com/7WqjWaz.png", # User avatar
|
143 |
+
"https://i.imgur.com/7uQWsZg.png" # Bot avatar
|
144 |
+
),
|
145 |
+
height=500
|
146 |
+
)
|
147 |
+
with gr.Column(scale=1):
|
148 |
+
gr.Markdown("**Примеры вопросов:**")
|
149 |
+
gr.Examples(
|
150 |
+
examples=[
|
151 |
+
"Какие слабости у вампиров?",
|
152 |
+
"Как защититься от оборотней?",
|
153 |
+
"Чем люди отличаются от других существ?",
|
154 |
+
"Расскажи подробнее о вампирах"
|
155 |
+
],
|
156 |
+
inputs=[msg]
|
157 |
+
)
|
158 |
+
|
159 |
+
msg = gr.Textbox(
|
160 |
+
label="Ваш вопрос",
|
161 |
+
placeholder="Введите вопрос и нажмите Enter...",
|
162 |
+
container=False
|
163 |
+
)
|
164 |
+
|
165 |
+
with gr.Row():
|
166 |
+
submit = gr.Button("Отправить", variant="primary")
|
167 |
+
clear = gr.Button("Очистить историю")
|
168 |
+
|
169 |
+
submit.click(process_question, [msg, chatbot], [msg, chatbot])
|
170 |
msg.submit(process_question, [msg, chatbot], [msg, chatbot])
|
171 |
clear.click(lambda: None, None, chatbot, queue=False)
|
172 |
|
173 |
+
# Запуск приложения
|
174 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|