Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,97 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import torch # Добавлен импорт torch
|
4 |
from langchain_community.document_loaders import TextLoader
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
-
from langchain_core.prompts import PromptTemplate
|
9 |
from langchain.chains import RetrievalQA
|
10 |
-
from
|
11 |
-
import
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
15 |
docs = []
|
16 |
-
for filename in os.listdir(
|
17 |
if filename.endswith(".txt"):
|
18 |
-
loader = TextLoader(os.path.join(
|
19 |
docs.extend(loader.load())
|
20 |
return docs
|
21 |
|
22 |
-
# 2.
|
23 |
-
def
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
# 3.
|
27 |
-
def
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
30 |
)
|
31 |
-
|
32 |
-
|
33 |
-
def create_vectorstore(docs, embeddings):
|
34 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
35 |
-
split_docs = text_splitter.split_documents(docs)
|
36 |
-
for doc in split_docs:
|
37 |
-
doc.page_content = clean_text(doc.page_content)
|
38 |
-
return FAISS.from_documents(split_docs, embeddings)
|
39 |
-
|
40 |
-
# 5. Загрузка модели ответа (с проверкой доступности GPU)
|
41 |
-
def create_llm_pipeline():
|
42 |
-
return pipeline(
|
43 |
"text-generation",
|
44 |
-
model=
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# 6. Объединение в цепочку
|
50 |
-
def build_chain():
|
51 |
-
docs = load_all_lore_files()
|
52 |
-
embeddings = create_embeddings()
|
53 |
-
vectorstore = create_vectorstore(docs, embeddings)
|
54 |
-
|
55 |
-
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
56 |
-
|
57 |
-
prompt = PromptTemplate(
|
58 |
-
template="""
|
59 |
-
Ты — помощник, который отвечает на вопросы по вымышленному лору. Отвечай кратко, точно и на русском языке.
|
60 |
-
Если в лоре нет нужной информации, честно скажи, что не знаешь.
|
61 |
-
|
62 |
-
Контекст:
|
63 |
-
{context}
|
64 |
-
|
65 |
-
Вопрос:
|
66 |
-
{question}
|
67 |
-
|
68 |
-
Ответ:
|
69 |
-
""",
|
70 |
-
input_variables=["context", "question"]
|
71 |
)
|
|
|
|
|
72 |
|
|
|
|
|
|
|
|
|
|
|
73 |
return RetrievalQA.from_chain_type(
|
74 |
-
llm=
|
75 |
-
|
76 |
-
|
|
|
77 |
)
|
78 |
|
79 |
-
#
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
fn=ask_question,
|
87 |
-
inputs=gr.Textbox(label="Спроси что-нибудь по лору"),
|
88 |
-
outputs=gr.Textbox(label="Ответ"),
|
89 |
-
title="Лор-бот"
|
90 |
-
).launch()
|
|
|
1 |
import os
|
2 |
+
import gradio as gr
|
|
|
3 |
from langchain_community.document_loaders import TextLoader
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
from langchain_community.vectorstores import FAISS
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
7 |
from langchain.chains import RetrievalQA
|
8 |
+
from langchain_community.llms import HuggingFacePipeline
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
10 |
|
11 |
+
# Конфигурация
|
12 |
+
DOCS_DIR = "lore"
|
13 |
+
MODEL_NAME = "IlyaGusev/saiga_mistral_7b" # Оптимальная модель для русского
|
14 |
+
EMBEDDINGS_MODEL = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
15 |
+
|
16 |
+
# 1. Загрузка документов
|
17 |
+
def load_documents():
|
18 |
docs = []
|
19 |
+
for filename in os.listdir(DOCS_DIR):
|
20 |
if filename.endswith(".txt"):
|
21 |
+
loader = TextLoader(os.path.join(DOCS_DIR, filename), encoding="utf-8")
|
22 |
docs.extend(loader.load())
|
23 |
return docs
|
24 |
|
25 |
+
# 2. Подготовка базы знаний
|
26 |
+
def prepare_knowledge_base():
|
27 |
+
documents = load_documents()
|
28 |
+
|
29 |
+
# Разбиваем текст на чанки
|
30 |
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
31 |
+
splits = text_splitter.split_documents(documents)
|
32 |
+
|
33 |
+
# Создаем векторное хранилище
|
34 |
+
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL)
|
35 |
+
vectorstore = FAISS.from_documents(splits, embeddings)
|
36 |
+
|
37 |
+
return vectorstore
|
38 |
|
39 |
+
# 3. Инициализация языковой модели
|
40 |
+
def load_llm():
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
MODEL_NAME,
|
44 |
+
device_map="auto",
|
45 |
+
load_in_4bit=True # Экономия памяти
|
46 |
)
|
47 |
+
|
48 |
+
pipe = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
"text-generation",
|
50 |
+
model=model,
|
51 |
+
tokenizer=tokenizer,
|
52 |
+
max_new_tokens=200,
|
53 |
+
temperature=0.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
)
|
55 |
+
|
56 |
+
return HuggingFacePipeline(pipeline=pipe)
|
57 |
|
58 |
+
# 4. Создание цепочки для вопросов-ответов
|
59 |
+
def create_qa_chain():
|
60 |
+
vectorstore = prepare_knowledge_base()
|
61 |
+
llm = load_llm()
|
62 |
+
|
63 |
return RetrievalQA.from_chain_type(
|
64 |
+
llm=llm,
|
65 |
+
chain_type="stuff",
|
66 |
+
retriever=vectorstore.as_retriever(search_kwargs={"k": 2}),
|
67 |
+
return_source_documents=True
|
68 |
)
|
69 |
|
70 |
+
# 5. Функция для ответов
|
71 |
+
def get_answer(question):
|
72 |
+
qa_chain = create_qa_chain()
|
73 |
+
result = qa_chain({"query": question})
|
74 |
+
|
75 |
+
# Форматируем ответ
|
76 |
+
answer = result["result"]
|
77 |
+
sources = list(set(doc.metadata["source"] for doc in result["source_documents"]))
|
78 |
+
|
79 |
+
return f"{answer}\n\nИсточники: {', '.join(sources)}"
|
80 |
|
81 |
+
# 6. Интерфейс Gradio
|
82 |
+
with gr.Blocks() as demo:
|
83 |
+
gr.Markdown("## 🧛 Лор-бот: справочник по сверхъестественному")
|
84 |
+
|
85 |
+
with gr.Row():
|
86 |
+
question = gr.Textbox(label="Ваш вопрос", placeholder="Какие слабости у вампиров?")
|
87 |
+
submit_btn = gr.Button("Спросить")
|
88 |
+
|
89 |
+
answer = gr.Textbox(label="Ответ", interactive=False)
|
90 |
+
|
91 |
+
submit_btn.click(
|
92 |
+
fn=get_answer,
|
93 |
+
inputs=question,
|
94 |
+
outputs=answer
|
95 |
+
)
|
96 |
|
97 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|