Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,97 +1,91 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
-
from langchain.text_splitter import
|
5 |
-
from
|
6 |
-
from
|
7 |
from langchain.chains import RetrievalQA
|
8 |
-
from
|
9 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
10 |
|
11 |
# Конфигурация
|
12 |
DOCS_DIR = "lore"
|
13 |
-
MODEL_NAME = "IlyaGusev/saiga_mistral_7b" # Оптимальная модель для русского
|
14 |
EMBEDDINGS_MODEL = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
|
|
|
|
15 |
|
16 |
-
# 1. Загрузка документов
|
17 |
def load_documents():
|
18 |
docs = []
|
19 |
for filename in os.listdir(DOCS_DIR):
|
20 |
if filename.endswith(".txt"):
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
return docs
|
24 |
|
25 |
-
# 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def prepare_knowledge_base():
|
27 |
documents = load_documents()
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# Создаем векторное хранилище
|
34 |
-
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL)
|
35 |
-
vectorstore = FAISS.from_documents(splits, embeddings)
|
36 |
-
|
37 |
-
return vectorstore
|
38 |
-
|
39 |
-
# 3. Инициализация языковой модели
|
40 |
-
def load_llm():
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
42 |
-
model = AutoModelForCausalLM.from_pretrained(
|
43 |
-
MODEL_NAME,
|
44 |
-
device_map="auto",
|
45 |
-
load_in_4bit=True # Экономия памяти
|
46 |
-
)
|
47 |
-
|
48 |
-
pipe = pipeline(
|
49 |
-
"text-generation",
|
50 |
-
model=model,
|
51 |
-
tokenizer=tokenizer,
|
52 |
-
max_new_tokens=200,
|
53 |
-
temperature=0.3
|
54 |
)
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
-
# 4. Создание цепочки
|
59 |
def create_qa_chain():
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
return RetrievalQA.from_chain_type(
|
64 |
llm=llm,
|
65 |
chain_type="stuff",
|
66 |
-
retriever=
|
67 |
-
|
|
|
68 |
)
|
69 |
|
70 |
-
# 5.
|
71 |
def get_answer(question):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
return f"{answer}\n\nИсточники: {', '.join(sources)}"
|
80 |
|
81 |
-
#
|
82 |
-
with gr.Blocks() as
|
83 |
-
gr.Markdown("## 🧛
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
answer = gr.Textbox(label="Ответ", interactive=False)
|
90 |
-
|
91 |
-
submit_btn.click(
|
92 |
-
fn=get_answer,
|
93 |
-
inputs=question,
|
94 |
-
outputs=answer
|
95 |
-
)
|
96 |
|
97 |
-
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
from langchain.document_loaders import TextLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
from langchain.chains import RetrievalQA
|
8 |
+
from langchain.llms import HuggingFaceHub
|
|
|
9 |
|
10 |
# Конфигурация
|
11 |
DOCS_DIR = "lore"
|
|
|
12 |
EMBEDDINGS_MODEL = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
13 |
+
LLM_REPO = "IlyaGusev/saiga_mistral_7b"
|
14 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Добавьте в Secrets Space
|
15 |
|
16 |
+
# 1. Загрузка документов с обработкой ошибок
|
17 |
def load_documents():
|
18 |
docs = []
|
19 |
for filename in os.listdir(DOCS_DIR):
|
20 |
if filename.endswith(".txt"):
|
21 |
+
try:
|
22 |
+
loader = TextLoader(
|
23 |
+
os.path.join(DOCS_DIR, filename),
|
24 |
+
encoding="utf-8"
|
25 |
+
)
|
26 |
+
docs.extend(loader.load())
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Ошибка загрузки {filename}: {str(e)}")
|
29 |
return docs
|
30 |
|
31 |
+
# 2. Инициализация эмбеддингов с проверкой
|
32 |
+
def get_embeddings():
|
33 |
+
try:
|
34 |
+
return HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL)
|
35 |
+
except ImportError:
|
36 |
+
raise ImportError(
|
37 |
+
"Требуемые пакеты не установлены. "
|
38 |
+
"Добавьте в requirements.txt:\n"
|
39 |
+
"sentence-transformers\n"
|
40 |
+
"torch\n"
|
41 |
+
"transformers"
|
42 |
+
)
|
43 |
+
|
44 |
+
# 3. Подготовка базы знаний
|
45 |
def prepare_knowledge_base():
|
46 |
documents = load_documents()
|
47 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
48 |
+
chunk_size=500,
|
49 |
+
chunk_overlap=50,
|
50 |
+
separators=["\n\n", "\n", " ", ""]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
)
|
52 |
+
splits = text_splitter.split_documents(documents)
|
53 |
+
embeddings = get_embeddings()
|
54 |
+
return FAISS.from_documents(splits, embeddings)
|
55 |
|
56 |
+
# 4. Создание цепочки QA
|
57 |
def create_qa_chain():
|
58 |
+
llm = HuggingFaceHub(
|
59 |
+
repo_id=LLM_REPO,
|
60 |
+
huggingfacehub_api_token=HF_TOKEN,
|
61 |
+
model_kwargs={
|
62 |
+
"temperature": 0.3,
|
63 |
+
"max_new_tokens": 200
|
64 |
+
}
|
65 |
+
)
|
66 |
return RetrievalQA.from_chain_type(
|
67 |
llm=llm,
|
68 |
chain_type="stuff",
|
69 |
+
retriever=prepare_knowledge_base().as_retriever(
|
70 |
+
search_kwargs={"k": 2}
|
71 |
+
)
|
72 |
)
|
73 |
|
74 |
+
# 5. Интерфейс с обработкой ошибок
|
75 |
def get_answer(question):
|
76 |
+
try:
|
77 |
+
qa = create_qa_chain()
|
78 |
+
result = qa.run(question)
|
79 |
+
return result[:500] # Обрезаем слишком длинные ответы
|
80 |
+
except Exception as e:
|
81 |
+
return f"⚠️ Ошибка: {str(e)}"
|
|
|
|
|
82 |
|
83 |
+
# Запуск приложения
|
84 |
+
with gr.Blocks(title="📚 Лор-бот") as app:
|
85 |
+
gr.Markdown("## 🧛 Вопрос-ответ по лору")
|
86 |
+
question = gr.Textbox(label="Ваш вопрос", placeholder="Какие слабости у вампиров?")
|
87 |
+
output = gr.Textbox(label="Ответ", interactive=False)
|
88 |
+
btn = gr.Button("Спросить")
|
89 |
+
btn.click(get_answer, inputs=question, outputs=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
app.launch(server_name="0.0.0.0", server_port=7860)
|