Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,14 @@ import os
|
|
2 |
import gradio as gr
|
3 |
from langchain.document_loaders import TextLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.vectorstores import FAISS
|
7 |
from langchain.chains import RetrievalQA
|
8 |
from langchain.llms import HuggingFaceHub
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Конфигурация
|
11 |
DOCS_DIR = "lore"
|
@@ -13,79 +17,101 @@ EMBEDDINGS_MODEL = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
|
13 |
LLM_REPO = "IlyaGusev/saiga_mistral_7b"
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN") # Добавьте в Secrets Space
|
15 |
|
16 |
-
# 1.
|
17 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
docs = []
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
21 |
try:
|
22 |
-
loader = TextLoader(
|
23 |
-
os.path.join(DOCS_DIR, filename),
|
24 |
-
encoding="utf-8"
|
25 |
-
)
|
26 |
docs.extend(loader.load())
|
|
|
27 |
except Exception as e:
|
28 |
-
print(f"Ошибка
|
29 |
return docs
|
30 |
|
31 |
-
#
|
32 |
def get_embeddings():
|
33 |
try:
|
34 |
return HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL)
|
35 |
-
except
|
36 |
-
raise
|
37 |
-
"Требуемые пакеты не установлены. "
|
38 |
-
"Добавьте в requirements.txt:\n"
|
39 |
-
"sentence-transformers\n"
|
40 |
-
"torch\n"
|
41 |
-
"transformers"
|
42 |
-
)
|
43 |
|
44 |
-
#
|
45 |
-
def
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
text_splitter = RecursiveCharacterTextSplitter(
|
48 |
-
chunk_size=
|
49 |
-
chunk_overlap=
|
50 |
separators=["\n\n", "\n", " ", ""]
|
51 |
)
|
52 |
splits = text_splitter.split_documents(documents)
|
|
|
|
|
53 |
embeddings = get_embeddings()
|
54 |
-
|
55 |
-
|
56 |
-
#
|
57 |
-
def create_qa_chain():
|
58 |
llm = HuggingFaceHub(
|
59 |
repo_id=LLM_REPO,
|
60 |
huggingfacehub_api_token=HF_TOKEN,
|
61 |
model_kwargs={
|
62 |
-
"temperature": 0.
|
63 |
-
"
|
64 |
}
|
65 |
)
|
|
|
66 |
return RetrievalQA.from_chain_type(
|
67 |
llm=llm,
|
68 |
chain_type="stuff",
|
69 |
-
retriever=
|
70 |
-
|
71 |
-
)
|
72 |
)
|
73 |
|
74 |
-
# 5.
|
75 |
-
def
|
76 |
try:
|
77 |
-
qa =
|
78 |
-
result = qa
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
except Exception as e:
|
81 |
-
return f"
|
82 |
|
83 |
-
#
|
84 |
with gr.Blocks(title="📚 Лор-бот") as app:
|
85 |
-
gr.Markdown("## 🧛
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
90 |
|
91 |
app.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
2 |
import gradio as gr
|
3 |
from langchain.document_loaders import TextLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
5 |
from langchain.vectorstores import FAISS
|
6 |
from langchain.chains import RetrievalQA
|
7 |
from langchain.llms import HuggingFaceHub
|
8 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
+
import warnings
|
10 |
+
|
11 |
+
# Фикс для предупреждений
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
|
14 |
# Конфигурация
|
15 |
DOCS_DIR = "lore"
|
|
|
17 |
LLM_REPO = "IlyaGusev/saiga_mistral_7b"
|
18 |
HF_TOKEN = os.getenv("HF_TOKEN") # Добавьте в Secrets Space
|
19 |
|
20 |
+
# 1. Проверка зависимостей
|
21 |
+
def check_dependencies():
|
22 |
+
try:
|
23 |
+
from sentence_transformers import SentenceTransformer
|
24 |
+
import torch
|
25 |
+
from transformers import pipeline
|
26 |
+
print("✔ Все зависимости установлены")
|
27 |
+
except ImportError as e:
|
28 |
+
raise ImportError(
|
29 |
+
f"❌ Не хватает пакетов. Убедитесь, что requirements.txt содержит:\n"
|
30 |
+
f"- sentence-transformers\n- torch\n- transformers\n\n"
|
31 |
+
f"Ошибка: {str(e)}"
|
32 |
+
)
|
33 |
+
|
34 |
+
# 2. Загрузка документов
|
35 |
+
def load_docs():
|
36 |
docs = []
|
37 |
+
if not os.path.exists(DOCS_DIR):
|
38 |
+
raise FileNotFoundError(f"Папка {DOCS_DIR} не найдена!")
|
39 |
+
|
40 |
+
for file in os.listdir(DOCS_DIR):
|
41 |
+
if file.endswith(".txt"):
|
42 |
try:
|
43 |
+
loader = TextLoader(os.path.join(DOCS_DIR, file), encoding="utf-8")
|
|
|
|
|
|
|
44 |
docs.extend(loader.load())
|
45 |
+
print(f"✓ Загружен файл: {file}")
|
46 |
except Exception as e:
|
47 |
+
print(f"⚠ Ошибка в файле {file}: {str(e)}")
|
48 |
return docs
|
49 |
|
50 |
+
# 3. Инициализация модели эмбеддингов
|
51 |
def get_embeddings():
|
52 |
try:
|
53 |
return HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL)
|
54 |
+
except Exception as e:
|
55 |
+
raise RuntimeError(f"Ошибка инициализации эмбеддингов: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# 4. Основная логика
|
58 |
+
def setup_qa_system():
|
59 |
+
check_dependencies()
|
60 |
+
|
61 |
+
# Загрузка и обработка документов
|
62 |
+
documents = load_docs()
|
63 |
+
if not documents:
|
64 |
+
raise ValueError("Нет документов для обработки!")
|
65 |
+
|
66 |
text_splitter = RecursiveCharacterTextSplitter(
|
67 |
+
chunk_size=300,
|
68 |
+
chunk_overlap=30,
|
69 |
separators=["\n\n", "\n", " ", ""]
|
70 |
)
|
71 |
splits = text_splitter.split_documents(documents)
|
72 |
+
|
73 |
+
# Создание векторного хранилища
|
74 |
embeddings = get_embeddings()
|
75 |
+
db = FAISS.from_documents(splits, embeddings)
|
76 |
+
|
77 |
+
# Инициализация языковой модели
|
|
|
78 |
llm = HuggingFaceHub(
|
79 |
repo_id=LLM_REPO,
|
80 |
huggingfacehub_api_token=HF_TOKEN,
|
81 |
model_kwargs={
|
82 |
+
"temperature": 0.2,
|
83 |
+
"max_length": 300
|
84 |
}
|
85 |
)
|
86 |
+
|
87 |
return RetrievalQA.from_chain_type(
|
88 |
llm=llm,
|
89 |
chain_type="stuff",
|
90 |
+
retriever=db.as_retriever(search_kwargs={"k": 2}),
|
91 |
+
return_source_documents=True
|
|
|
92 |
)
|
93 |
|
94 |
+
# 5. Функция для интерфейса
|
95 |
+
def answer_question(question):
|
96 |
try:
|
97 |
+
qa = setup_qa_system()
|
98 |
+
result = qa({"query": question})
|
99 |
+
answer = result["result"]
|
100 |
+
|
101 |
+
# Форматирование ответа
|
102 |
+
sources = list({os.path.basename(doc.metadata["source"]) for doc in result["source_documents"]})
|
103 |
+
return f"{answer}\n\n(Источники: {', '.join(sources)})"
|
104 |
except Exception as e:
|
105 |
+
return f"⚠ Произошла ошибка: {str(e)}"
|
106 |
|
107 |
+
# Интерфейс
|
108 |
with gr.Blocks(title="📚 Лор-бот") as app:
|
109 |
+
gr.Markdown("## 🧛 Справочник по сверхъестественному")
|
110 |
+
with gr.Row():
|
111 |
+
question = gr.Textbox(label="Ваш вопрос", placeholder="Какие слабости у вампиров?")
|
112 |
+
submit = gr.Button("Спросить")
|
113 |
+
answer = gr.Textbox(label="Ответ", interactive=False)
|
114 |
+
|
115 |
+
submit.click(answer_question, inputs=question, outputs=answer)
|
116 |
|
117 |
app.launch(server_name="0.0.0.0", server_port=7860)
|