Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,58 @@
|
|
1 |
-
import gradio as gr
|
2 |
import os
|
3 |
-
import
|
4 |
-
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from
|
7 |
-
from
|
8 |
from langchain.chains import RetrievalQA
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
)
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from langchain_community.document_loaders import TextLoader
|
|
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.chains import RetrievalQA
|
7 |
+
from langchain_community.llms import HuggingFaceHub
|
8 |
+
import gradio as gr
|
9 |
+
import re
|
10 |
+
|
11 |
+
# 1. Загрузка и очистка всех .txt файлов
|
12 |
+
def load_documents(folder_path):
|
13 |
+
documents = []
|
14 |
+
for file_name in os.listdir(folder_path):
|
15 |
+
if file_name.endswith(".txt"):
|
16 |
+
loader = TextLoader(os.path.join(folder_path, file_name), encoding="utf-8")
|
17 |
+
docs = loader.load()
|
18 |
+
for doc in docs:
|
19 |
+
# Очищаем спецсимволы типа [=/ и прочую ерунду
|
20 |
+
doc.page_content = re.sub(r'\[=/.*?\]', '', doc.page_content)
|
21 |
+
documents.append(doc)
|
22 |
+
return documents
|
23 |
+
|
24 |
+
# 2. Разбивка на чанки
|
25 |
+
def split_documents(documents):
|
26 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100)
|
27 |
+
return splitter.split_documents(documents)
|
28 |
+
|
29 |
+
# 3. Создание эмбеддингов
|
30 |
+
def create_embeddings():
|
31 |
+
return HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
32 |
+
|
33 |
+
# 4. Загрузка модели
|
34 |
+
def load_llm():
|
35 |
+
return HuggingFaceHub(
|
36 |
+
repo_id="IlyaGusev/saiga_mistral_7b_gguf", # можно заменить на что-то другое, если будет падать
|
37 |
+
model_kwargs={"temperature": 0.6, "max_new_tokens": 300}
|
38 |
+
)
|
39 |
+
|
40 |
+
# 5. Построение цепочки
|
41 |
+
def build_qa_chain():
|
42 |
+
raw_docs = load_documents("lore") # Папка lore/ рядом с app.py
|
43 |
+
docs = split_documents(raw_docs)
|
44 |
+
embeddings = create_embeddings()
|
45 |
+
db = FAISS.from_documents(docs, embeddings)
|
46 |
+
retriever = db.as_retriever()
|
47 |
+
llm = load_llm()
|
48 |
+
return RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
49 |
+
|
50 |
+
# 6. Интерфейс
|
51 |
+
qa_chain = build_qa_chain()
|
52 |
+
|
53 |
+
def answer_question(question):
|
54 |
+
result = qa_chain.run(question)
|
55 |
+
return result
|
56 |
+
|
57 |
+
iface = gr.Interface(fn=answer_question, inputs="text", outputs="text", title="Чат по Лору (RU)")
|
58 |
+
iface.launch()
|