Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +58 -0
- lore/vampires.txt +0 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import glob
|
| 3 |
+
import uvicorn
|
| 4 |
+
from fastapi import FastAPI
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
app = FastAPI()
|
| 10 |
+
|
| 11 |
+
# Загружаем модель для создания эмбеддингов
|
| 12 |
+
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
| 13 |
+
|
| 14 |
+
# Папка с файлами лора
|
| 15 |
+
LORE_DIR = './lore'
|
| 16 |
+
|
| 17 |
+
# Параметры нарезки текста
|
| 18 |
+
CHUNK_SIZE = 1000 # символов
|
| 19 |
+
CHUNK_OVERLAP = 100 # перекрытие кусков для связности текста
|
| 20 |
+
|
| 21 |
+
# Загружаем и обрабатываем лор
|
| 22 |
+
def load_lore_chunks():
|
| 23 |
+
chunks = []
|
| 24 |
+
file_paths = glob.glob(os.path.join(LORE_DIR, '*.txt'))
|
| 25 |
+
|
| 26 |
+
for path in file_paths:
|
| 27 |
+
with open(path, 'r', encoding='utf-8') as f:
|
| 28 |
+
text = f.read()
|
| 29 |
+
# чистим мусорные символы
|
| 30 |
+
text = ''.join(c if 0x20 <= ord(c) <= 0xFFFF else ' ' for c in text)
|
| 31 |
+
# разбиваем на кусочки
|
| 32 |
+
for i in range(0, len(text), CHUNK_SIZE - CHUNK_OVERLAP):
|
| 33 |
+
chunk = text[i:i + CHUNK_SIZE].strip()
|
| 34 |
+
if chunk:
|
| 35 |
+
chunks.append(chunk)
|
| 36 |
+
return chunks
|
| 37 |
+
|
| 38 |
+
# Загружаем чанки и строим эмбеддинги
|
| 39 |
+
print("Идёт загрузка файлов...")
|
| 40 |
+
lore_chunks = load_lore_chunks()
|
| 41 |
+
lore_embeddings = model.encode(lore_chunks)
|
| 42 |
+
print(f"Загружено {len(lore_chunks)} частей текста.")
|
| 43 |
+
|
| 44 |
+
# Функция для поиска лучшего ответа
|
| 45 |
+
def find_best_answer(question):
|
| 46 |
+
question_embedding = model.encode([question])[0]
|
| 47 |
+
similarities = cosine_similarity([question_embedding], lore_embeddings)[0]
|
| 48 |
+
best_idx = np.argmax(similarities)
|
| 49 |
+
return lore_chunks[best_idx]
|
| 50 |
+
|
| 51 |
+
@app.get("/")
|
| 52 |
+
def read_root():
|
| 53 |
+
return {"message": "Добро пожаловать в Лор-Бота!"}
|
| 54 |
+
|
| 55 |
+
@app.get("/ask/")
|
| 56 |
+
def ask_question(q: str):
|
| 57 |
+
answer = find_best_answer(q)
|
| 58 |
+
return {"question": q, "answer": answer}
|
lore/vampires.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
sentence-transformers
|
| 4 |
+
scikit-learn
|