Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from gradio import update | |
from functools import lru_cache | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from opencc import OpenCC # 用於簡體轉繁體 | |
# 初始化簡體到繁體轉換器 | |
cc = OpenCC('s2t') | |
# 可選模型列表 | |
MODEL_LIST = [ | |
"liswei/Taiwan-ELM-270M", | |
"Mxode/SmolLM-Chinese-180M", | |
"flyingfishinwater/chinese-baby-llama2", | |
"unsloth/gemma-3-1b-pt", | |
"ckiplab/gpt2-tiny-chinese", | |
"ckiplab/gpt2-base-chinese", | |
"liswei/Taiwan-ELM-1_1B", | |
"benchang1110/Qwen2.5-Taiwan-1.5B-Instruct", | |
"benchang1110/Taiwan-tinyllama-v1.0-base", | |
"lianghsun/Llama-3.2-Taiwan-3B", | |
"twinkle-ai/Llama-3.2-3B-F1-Instruct", | |
"Epiculous/Violet_Twilight-v0.2", | |
] | |
def get_pipeline(model_name): | |
tok = AutoTokenizer.from_pretrained(model_name) | |
mdl = AutoModelForCausalLM.from_pretrained( | |
model_name, weights_only=False, trust_remote_code=True | |
) | |
mdl.to("cuda") | |
return pipeline("text-generation", model=mdl, tokenizer=tok, device=0) | |
def suggest_next(text, model_name, k, m): | |
""" | |
使用 Beam Search 產生 m 條候選,並一次更新候選列表,轉繁體並編號。 | |
""" | |
gen_pipe = get_pipeline(model_name) | |
outs = gen_pipe( | |
text, | |
max_new_tokens=k, | |
num_beams=m, | |
num_return_sequences=m, | |
do_sample=False, | |
early_stopping=True | |
) | |
suggestions = [out["generated_text"][len(text):].strip() for out in outs] | |
suggestions = [s for s in suggestions if s] | |
suggestions = [cc.convert(s) for s in suggestions] | |
numbered = [f"{i+1}. {s}" for i, s in enumerate(suggestions)] | |
return update(choices=numbered, value=None) | |
def append_suggestion(current, choice): | |
if choice is None: | |
return current | |
text = choice.split(". ", 1)[1] if ". " in choice else choice | |
return current + text | |
# 自訂 CSS:模擬經典中文輸入法候選欄樣式 | |
custom_css = """ | |
#suggestions-bar { | |
margin-bottom: 8px; | |
} | |
#suggestions-bar .candidate-list { | |
display: flex; | |
gap: 8px; | |
background: #fff; | |
border: 1px solid #999; | |
border-radius: 4px; | |
padding: 4px 6px; | |
overflow-x: auto; | |
white-space: nowrap; | |
} | |
#suggestions-bar .candidate-list input[type=radio] { | |
display: none; | |
} | |
#suggestions-bar .candidate-list label { | |
position: relative; | |
cursor: pointer; | |
padding: 4px 8px; | |
font-size: 14px; | |
} | |
#suggestions-bar .candidate-list label:hover { | |
background: #f5f5f5; | |
} | |
#suggestions-bar .candidate-list input[type=radio]:checked + label { | |
background: #e6f7ff; | |
border: 1px solid #1890ff; | |
} | |
""" | |
with gr.Blocks(css=custom_css) as demo: | |
gr.Markdown( | |
"## 🇹🇼 繁體中文 IME 加速器 \ | |
" | |
"結合小型語言模型與 ZeroGPU,提供即時輸入法風格候選欄。" | |
) | |
# 候選條(置於上方) | |
suggestions = gr.Radio( | |
[], label="", interactive=True, type="value", | |
elem_id="suggestions-bar", elem_classes="candidate-list" | |
) | |
# 輸入框(置於候選條下方) | |
input_text = gr.Textbox( | |
label="", placeholder="請輸入拼音或文字…", | |
lines=1, max_lines=1, elem_id="input-box" | |
) | |
# 預測按鈕(置於文字框下方) | |
predict_button = gr.Button("預測", elem_id="predict-button") | |
# 進階參數設定(可摺疊) | |
with gr.Accordion("進階設定", open=False): | |
model_selector = gr.Dropdown( | |
MODEL_LIST, value=MODEL_LIST[0], label="模型" | |
) | |
k_slider = gr.Slider( | |
minimum=1, maximum=50, step=1, value=1, label="K(最大新詞元數)" | |
) | |
m_slider = gr.Slider( | |
minimum=1, maximum=30, step=1, value=6, label="M(建議數/Beam 數)" | |
) | |
auto_predict = gr.Checkbox( | |
value=True, label="自動預測(內容變更時觸發)", elem_id="auto-predict" | |
) | |
# 事件綁定 | |
predict_button.click( | |
fn=suggest_next, | |
inputs=[input_text, model_selector, k_slider, m_slider], | |
outputs=suggestions, | |
) | |
input_text.change( | |
fn=lambda txt, mdl, k, m, auto: suggest_next(txt, mdl, k, m) if auto else update(choices=[], value=None), | |
inputs=[input_text, model_selector, k_slider, m_slider, auto_predict], | |
outputs=suggestions, | |
) | |
suggestions.change( | |
fn=append_suggestion, | |
inputs=[input_text, suggestions], | |
outputs=input_text, | |
) | |
demo.launch() | |