Luigi's picture
update layout
6bcfde9
raw
history blame
4.54 kB
import spaces
import gradio as gr
from gradio import update
from functools import lru_cache
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from opencc import OpenCC # 用於簡體轉繁體
# 初始化簡體到繁體轉換器
cc = OpenCC('s2t')
# 可選模型列表
MODEL_LIST = [
"liswei/Taiwan-ELM-270M",
"Mxode/SmolLM-Chinese-180M",
"flyingfishinwater/chinese-baby-llama2",
"unsloth/gemma-3-1b-pt",
"ckiplab/gpt2-tiny-chinese",
"ckiplab/gpt2-base-chinese",
"liswei/Taiwan-ELM-1_1B",
"benchang1110/Qwen2.5-Taiwan-1.5B-Instruct",
"benchang1110/Taiwan-tinyllama-v1.0-base",
"lianghsun/Llama-3.2-Taiwan-3B",
"twinkle-ai/Llama-3.2-3B-F1-Instruct",
"Epiculous/Violet_Twilight-v0.2",
]
@lru_cache(maxsize=None)
def get_pipeline(model_name):
tok = AutoTokenizer.from_pretrained(model_name)
mdl = AutoModelForCausalLM.from_pretrained(
model_name, weights_only=False, trust_remote_code=True
)
mdl.to("cuda")
return pipeline("text-generation", model=mdl, tokenizer=tok, device=0)
@spaces.GPU
def suggest_next(text, model_name, k, m):
"""
使用 Beam Search 產生 m 條候選,並一次更新候選列表,轉繁體並編號。
"""
gen_pipe = get_pipeline(model_name)
outs = gen_pipe(
text,
max_new_tokens=k,
num_beams=m,
num_return_sequences=m,
do_sample=False,
early_stopping=True
)
suggestions = [out["generated_text"][len(text):].strip() for out in outs]
suggestions = [s for s in suggestions if s]
suggestions = [cc.convert(s) for s in suggestions]
numbered = [f"{i+1}. {s}" for i, s in enumerate(suggestions)]
return update(choices=numbered, value=None)
def append_suggestion(current, choice):
if choice is None:
return current
text = choice.split(". ", 1)[1] if ". " in choice else choice
return current + text
# 自訂 CSS:模擬經典中文輸入法候選欄樣式
custom_css = """
#suggestions-bar {
margin-bottom: 8px;
}
#suggestions-bar .candidate-list {
display: flex;
gap: 8px;
background: #fff;
border: 1px solid #999;
border-radius: 4px;
padding: 4px 6px;
overflow-x: auto;
white-space: nowrap;
}
#suggestions-bar .candidate-list input[type=radio] {
display: none;
}
#suggestions-bar .candidate-list label {
position: relative;
cursor: pointer;
padding: 4px 8px;
font-size: 14px;
}
#suggestions-bar .candidate-list label:hover {
background: #f5f5f5;
}
#suggestions-bar .candidate-list input[type=radio]:checked + label {
background: #e6f7ff;
border: 1px solid #1890ff;
}
"""
with gr.Blocks(css=custom_css) as demo:
gr.Markdown(
"## 🇹🇼 繁體中文 IME 加速器 \
"
"結合小型語言模型與 ZeroGPU,提供即時輸入法風格候選欄。"
)
# 候選條(置於上方)
suggestions = gr.Radio(
[], label="", interactive=True, type="value",
elem_id="suggestions-bar", elem_classes="candidate-list"
)
# 輸入框(置於候選條下方)
input_text = gr.Textbox(
label="", placeholder="請輸入拼音或文字…",
lines=1, max_lines=1, elem_id="input-box"
)
# 預測按鈕(置於文字框下方)
predict_button = gr.Button("預測", elem_id="predict-button")
# 進階參數設定(可摺疊)
with gr.Accordion("進階設定", open=False):
model_selector = gr.Dropdown(
MODEL_LIST, value=MODEL_LIST[0], label="模型"
)
k_slider = gr.Slider(
minimum=1, maximum=50, step=1, value=1, label="K(最大新詞元數)"
)
m_slider = gr.Slider(
minimum=1, maximum=30, step=1, value=6, label="M(建議數/Beam 數)"
)
auto_predict = gr.Checkbox(
value=True, label="自動預測(內容變更時觸發)", elem_id="auto-predict"
)
# 事件綁定
predict_button.click(
fn=suggest_next,
inputs=[input_text, model_selector, k_slider, m_slider],
outputs=suggestions,
)
input_text.change(
fn=lambda txt, mdl, k, m, auto: suggest_next(txt, mdl, k, m) if auto else update(choices=[], value=None),
inputs=[input_text, model_selector, k_slider, m_slider, auto_predict],
outputs=suggestions,
)
suggestions.change(
fn=append_suggestion,
inputs=[input_text, suggestions],
outputs=input_text,
)
demo.launch()