Luigi's picture
default to 10 beam search
99ef6df
raw
history blame
2.84 kB
# app.py
import spaces
import gradio as gr
from gradio import update
from functools import lru_cache
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# 可選模型列表
MODEL_LIST = [
"ckiplab/gpt2-tiny-chinese",
"ckiplab/gpt2-base-chinese",
"liswei/Taiwan-ELM-270M-Instruct",
"liswei/Taiwan-ELM-1_1B",
"google/gemma-3-1b-pt",
"benchang1110/Qwen2.5-Taiwan-1.5B-Instruct",
"benchang1110/Taiwan-tinyllama-v1.0-base",
]
@lru_cache(maxsize=None)
def get_pipeline(model_name):
tok = AutoTokenizer.from_pretrained(model_name)
mdl = AutoModelForCausalLM.from_pretrained(model_name, weights_only=False)
mdl.to("cuda")
return pipeline("text-generation", model=mdl, tokenizer=tok, device=0)
@spaces.GPU
def suggest_next(text, model_name, k, m):
"""
使用 Beam Search 產生 M 條最可能的下段建議,並一次更新可選項清單。
"""
gen_pipe = get_pipeline(model_name)
outs = gen_pipe(
text,
max_new_tokens=k,
num_beams=m,
num_return_sequences=m,
do_sample=False,
early_stopping=True
)
suggestions = [out["generated_text"][len(text):] for out in outs]
# 使用 None 重置選值,避免預設 value 不在 choices 列表中
return update(choices=suggestions, value=None)
def append_suggestion(current, choice):
# 如果沒有選擇,直接返回原文字
if choice is None:
return current
return current + choice
with gr.Blocks() as demo:
gr.Markdown(
"## 🇹🇼 台灣中文下段預測 \n"
"結合小型語言模型與 ZeroGPU,即時 IME 風格建議條。"
)
# 建議清單置頂,使用 Radio 類型一次展開
suggestions = gr.Radio(
[], label="建議清單", interactive=True, type="value", elem_id="suggestions-bar"
)
# 輸入區與生成按鈕並排
with gr.Row():
input_text = gr.TextArea(
label="輸入文字", lines=4, placeholder="請在此輸入起始片段…"
)
gpu_button = gr.Button("使用 GPU 生成建議")
# 參數設定區
with gr.Row():
model_selector = gr.Dropdown(
MODEL_LIST, value=MODEL_LIST[0], label="選擇模型"
)
k_slider = gr.Slider(
minimum=1, maximum=50, step=1, value=5, label="K(最大新生成詞元)"
)
m_slider = gr.Slider(
minimum=1, maximum=10, step=1, value=10, label="M(建議數量 / Beam 數)"
)
# 事件綁定
gpu_button.click(
fn=suggest_next,
inputs=[input_text, model_selector, k_slider, m_slider],
outputs=suggestions,
)
suggestions.change(
fn=append_suggestion,
inputs=[input_text, suggestions],
outputs=input_text,
)
demo.launch()