Luigi's picture
add divsere beam search and merge common prefixes
9c6147f
raw
history blame
7.34 kB
# app.py
import spaces
import gradio as gr
from gradio import update
from functools import lru_cache
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from opencc import OpenCC # 用於簡體轉繁體
# 初始化簡體到繁體轉換器
cc = OpenCC('s2t')
# 可選模型列表
MODEL_LIST = [
"liswei/Taiwan-ELM-270M",
"Mxode/SmolLM-Chinese-180M",
"flyingfishinwater/chinese-baby-llama2",
"unsloth/gemma-3-1b-pt",
"ckiplab/gpt2-tiny-chinese",
"ckiplab/gpt2-base-chinese",
"liswei/Taiwan-ELM-1_1B",
"benchang1110/Qwen2.5-Taiwan-1.5B-Instruct",
"benchang1110/Taiwan-tinyllama-v1.0-base",
"lianghsun/Llama-3.2-Taiwan-3B",
"twinkle-ai/Llama-3.2-3B-F1-Instruct",
"Epiculous/Violet_Twilight-v0.2",
]
def merge_common_prefixes(suggestions, min_len=2):
"""
合併具有共同前綴的建議:
- 找出所有長度 ≥ min_len 的共同前綴
- 將這些前綴作為新建議,移除原有被合併的項目
"""
prefixes = []
to_remove = set()
for i in range(len(suggestions)):
for j in range(i+1, len(suggestions)):
s1, s2 = suggestions[i], suggestions[j]
# 計算字元級共同前綴
common = ''.join(c1 for c1, c2 in zip(s1, s2) if c1 == c2)
if len(common) >= min_len:
prefixes.append(common)
to_remove.update([s1, s2])
# 去重前綴
unique_prefixes = []
for p in prefixes:
if p not in unique_prefixes:
unique_prefixes.append(p)
# 剩下沒有被合併的建議
remainder = [s for s in suggestions if s not in to_remove]
return unique_prefixes + remainder
@lru_cache(maxsize=8)
def get_pipeline(model_name):
tok = AutoTokenizer.from_pretrained(model_name)
mdl = AutoModelForCausalLM.from_pretrained(
model_name, weights_only=False, trust_remote_code=True
)
mdl.to("cuda")
return pipeline("text-generation", model=mdl, tokenizer=tok, device=0)
@spaces.GPU
def suggest_next(text, model_name, k, m, num_beam_groups, diversity_penalty):
"""
使用 Diverse Beam Search 產生 m 條候選:
- num_beams = m
- num_beam_groups, diversity_penalty 可調整多樣性
之後轉繁體、去重、合併共同前綴後回傳。
"""
gen_pipe = get_pipeline(model_name)
outs = gen_pipe(
text,
max_new_tokens=k,
num_beams=m,
num_beam_groups=num_beam_groups,
diversity_penalty=diversity_penalty,
num_return_sequences=m,
do_sample=False,
early_stopping=True
)
# 提取新生成文本,過濾空字串,轉繁體
suggestions = [out["generated_text"][len(text):].strip() for out in outs]
suggestions = [s for s in suggestions if s]
suggestions = [cc.convert(s) for s in suggestions]
# 去除重複,保留順序
unique_suggestions = []
for s in suggestions:
if s not in unique_suggestions:
unique_suggestions.append(s)
# 合併共同前綴
final_suggestions = merge_common_prefixes(unique_suggestions, min_len=2)
return update(choices=final_suggestions, value=None)
def append_suggestion(current, choice):
if choice is None:
return current
# 直接插入選中的候選文字
return current + choice
# 自訂 CSS:模擬經典中文輸入法候選欄樣式,並優化手機響應與自動高度
custom_css = """
#suggestions-bar {
width: 100%;
margin-bottom: 8px;
}
#suggestions-bar .candidate-list {
display: flex;
gap: 8px;
background: #fff;
border: 1px solid #999;
border-radius: 4px;
padding: 6px;
overflow-x: auto;
white-space: nowrap;
}
#suggestions-bar .candidate-list label {
cursor: pointer;
padding: 6px 10px;
font-size: 16px;
}
#suggestions-bar .candidate-list label:hover {
background: #f5f5f5;
}
#suggestions-bar .candidate-list input[type=radio]:checked + label {
background: #e6f7ff;
border: 1px solid #1890ff;
}
#input-box textarea {
width: 100%;
font-size: 16px;
padding: 6px;
box-sizing: border-box;
overflow: hidden;
resize: none;
}
#predict-button {
margin-top: 8px;
width: 100%;
}
/* 手機響應式 */
@media only screen and (max-width: 600px) {
#suggestions-bar .candidate-list label {
padding: 8px;
font-size: 18px;
}
#predict-button {
font-size: 18px;
}
}
"""
# 自動增高腳本
auto_height_js = """
<script>
window.addEventListener('load', () => {
const textarea = document.querySelector('#input-box textarea');
if (!textarea) return;
textarea.style.height = 'auto';
textarea.addEventListener('input', function() {
this.style.height = 'auto';
this.style.height = this.scrollHeight + 'px';
});
});
</script>
"""
with gr.Blocks(css=custom_css) as demo:
gr.HTML(auto_height_js)
gr.Markdown(
"## 🇹🇼 繁體中文 IME 加速器 \
"
"結合小型語言模型與 ZeroGPU,提供即時輸入法風格候選欄。"
)
with gr.Column():
suggestions = gr.Radio(
[], label="", interactive=True, type="value",
elem_id="suggestions-bar", elem_classes="candidate-list"
)
input_text = gr.Textbox(
label="", placeholder="請輸入拼音或文字…",
lines=1, max_lines=20, elem_id="input-box"
)
# 永遠顯示預測按鈕
with gr.Row():
auto_predict = gr.Checkbox(
value=True, label="自動預測(內容變更時觸發)", elem_id="auto-predict"
)
predict_button = gr.Button(
"預測", elem_id="predict-button"
)
with gr.Accordion("進階設定", open=False):
model_selector = gr.Dropdown(
MODEL_LIST, value=MODEL_LIST[0], label="模型"
)
k_slider = gr.Slider(
minimum=1, maximum=50, step=1, value=10, label="K(最大新詞元數)"
)
m_slider = gr.Slider(
minimum=1, maximum=30, step=1, value=30, label="M(建議數/Beam 數)"
)
group_slider = gr.Slider(
minimum=1, maximum=30, step=1, value=30,
label="Beam 群組數 (num_beam_groups)"
)
diversity_penalty_slider = gr.Slider(
minimum=0.0, maximum=2.0, step=0.1, value=1.0,
label="多樣性懲罰 (diversity_penalty)"
)
# 綁定事件
predict_button.click(
fn=suggest_next,
inputs=[
input_text,
model_selector,
k_slider,
m_slider,
group_slider,
diversity_penalty_slider
],
outputs=suggestions,
)
input_text.change(
fn=lambda txt, mdl, k, m, g, d, auto: (
suggest_next(txt, mdl, k, m, g, d)
if auto else update(choices=[], value=None)
),
inputs=[
input_text,
model_selector,
k_slider,
m_slider,
group_slider,
diversity_penalty_slider,
auto_predict
],
outputs=suggestions,
)
suggestions.change(
fn=append_suggestion,
inputs=[input_text, suggestions],
outputs=input_text,
)
demo.launch()