Spaces:
Running
on
Zero
Running
on
Zero
import gcd
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from gradio import update
|
|
5 |
from functools import lru_cache
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
from opencc import OpenCC # 用於簡體轉繁體
|
|
|
8 |
|
9 |
# 初始化簡體到繁體轉換器
|
10 |
cc = OpenCC('s2t')
|
@@ -81,7 +82,7 @@ def suggest_next(text, model_name, k, m, num_beam_groups, diversity_penalty):
|
|
81 |
}
|
82 |
if diversity_penalty and diversity_penalty > 0:
|
83 |
valid_group = gcd(m, num_beam_groups)
|
84 |
-
gen_kwargs["num_beam_groups"] =
|
85 |
gen_kwargs["diversity_penalty"] = float(diversity_penalty)
|
86 |
|
87 |
outs = gen_pipe(text, **gen_kwargs)
|
|
|
5 |
from functools import lru_cache
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
from opencc import OpenCC # 用於簡體轉繁體
|
8 |
+
from math import gcd
|
9 |
|
10 |
# 初始化簡體到繁體轉換器
|
11 |
cc = OpenCC('s2t')
|
|
|
82 |
}
|
83 |
if diversity_penalty and diversity_penalty > 0:
|
84 |
valid_group = gcd(m, num_beam_groups)
|
85 |
+
gen_kwargs["num_beam_groups"] = valid_group
|
86 |
gen_kwargs["diversity_penalty"] = float(diversity_penalty)
|
87 |
|
88 |
outs = gen_pipe(text, **gen_kwargs)
|