Spaces:
Running
on
Zero
Running
on
Zero
fix 'No candidate PyTorch version found for ZeroGPU'
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import gradio as gr
|
|
4 |
from functools import lru_cache
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
|
7 |
-
# 可選模型列表
|
8 |
MODEL_LIST = [
|
9 |
"ckiplab/gpt2-tiny-chinese",
|
10 |
"ckiplab/gpt2-base-chinese",
|
@@ -18,43 +17,33 @@ MODEL_LIST = [
|
|
18 |
@lru_cache(maxsize=None)
|
19 |
def get_pipeline(model_name):
|
20 |
tok = AutoTokenizer.from_pretrained(model_name)
|
21 |
-
|
|
|
|
|
22 |
mdl.to("cuda")
|
23 |
return pipeline("text-generation", model=mdl, tokenizer=tok, device=0)
|
24 |
|
25 |
@spaces.GPU
|
26 |
def suggest_next(text, model_name, k, m):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
return [out["generated_text"][len(text):] for out in outs]
|
31 |
|
32 |
def append_suggestion(current, choice):
|
33 |
return current + choice
|
34 |
|
35 |
with gr.Blocks() as demo:
|
36 |
-
gr.Markdown(
|
37 |
-
"## 🇹🇼 台灣中文下段預測\n"
|
38 |
-
"結合小型語言模型與 ZeroGPU,提供即時 IME 風格的下段文字建議。"
|
39 |
-
)
|
40 |
|
41 |
-
input_text = gr.TextArea(
|
42 |
-
label="輸入文字", lines=4, placeholder="請在此輸入起始片段…"
|
43 |
-
)
|
44 |
|
45 |
with gr.Row():
|
46 |
-
model_selector = gr.Dropdown(
|
47 |
-
|
48 |
-
)
|
49 |
-
k_slider = gr.Slider(
|
50 |
-
minimum=1, maximum=50, step=1, value=5, label="K(最大新生成詞元)"
|
51 |
-
)
|
52 |
-
m_slider = gr.Slider(
|
53 |
-
minimum=1, maximum=10, step=1, value=5, label="M(建議數量)"
|
54 |
-
)
|
55 |
|
56 |
suggestions = gr.Dropdown([], label="建議清單", interactive=True)
|
57 |
-
|
58 |
gpu_button = gr.Button("使用 GPU 生成建議")
|
59 |
|
60 |
gpu_button.click(
|
@@ -62,7 +51,6 @@ with gr.Blocks() as demo:
|
|
62 |
inputs=[input_text, model_selector, k_slider, m_slider],
|
63 |
outputs=suggestions,
|
64 |
)
|
65 |
-
|
66 |
suggestions.change(
|
67 |
fn=append_suggestion,
|
68 |
inputs=[input_text, suggestions],
|
|
|
4 |
from functools import lru_cache
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
|
|
|
7 |
MODEL_LIST = [
|
8 |
"ckiplab/gpt2-tiny-chinese",
|
9 |
"ckiplab/gpt2-base-chinese",
|
|
|
17 |
@lru_cache(maxsize=None)
|
18 |
def get_pipeline(model_name):
|
19 |
tok = AutoTokenizer.from_pretrained(model_name)
|
20 |
+
# By setting weights_only=False we bypass the torch.load(weights_only=True)
|
21 |
+
# path that is disallowed for torch<2.6 due to CVE-2025-32434 :contentReference[oaicite:1]{index=1}.
|
22 |
+
mdl = AutoModelForCausalLM.from_pretrained(model_name, weights_only=False)
|
23 |
mdl.to("cuda")
|
24 |
return pipeline("text-generation", model=mdl, tokenizer=tok, device=0)
|
25 |
|
26 |
@spaces.GPU
|
27 |
def suggest_next(text, model_name, k, m):
|
28 |
+
outs = get_pipeline(model_name)(
|
29 |
+
text, max_new_tokens=k, num_return_sequences=m, do_sample=False
|
30 |
+
)
|
31 |
return [out["generated_text"][len(text):] for out in outs]
|
32 |
|
33 |
def append_suggestion(current, choice):
|
34 |
return current + choice
|
35 |
|
36 |
with gr.Blocks() as demo:
|
37 |
+
gr.Markdown("## 🇹🇼 台灣中文下段預測(ZeroGPU + Gradio v5)")
|
|
|
|
|
|
|
38 |
|
39 |
+
input_text = gr.TextArea(label="輸入文字", lines=4, placeholder="請在此輸入起始片段…")
|
|
|
|
|
40 |
|
41 |
with gr.Row():
|
42 |
+
model_selector = gr.Dropdown(MODEL_LIST, value=MODEL_LIST[0], label="選擇模型")
|
43 |
+
k_slider = gr.Slider(1, 50, value=5, label="K(最大新生成詞元)")
|
44 |
+
m_slider = gr.Slider(1, 10, value=5, label="M(建議數量)")
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
suggestions = gr.Dropdown([], label="建議清單", interactive=True)
|
|
|
47 |
gpu_button = gr.Button("使用 GPU 生成建議")
|
48 |
|
49 |
gpu_button.click(
|
|
|
51 |
inputs=[input_text, model_selector, k_slider, m_slider],
|
52 |
outputs=suggestions,
|
53 |
)
|
|
|
54 |
suggestions.change(
|
55 |
fn=append_suggestion,
|
56 |
inputs=[input_text, suggestions],
|