# app.py import spaces import gradio as gr from gradio import update from functools import lru_cache from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # 可選模型列表 MODEL_LIST = [ "ckiplab/gpt2-tiny-chinese", "ckiplab/gpt2-base-chinese", "liswei/Taiwan-ELM-270M-Instruct", "liswei/Taiwan-ELM-1_1B", "google/gemma-3-1b-pt", "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct", "benchang1110/Taiwan-tinyllama-v1.0-base", ] @lru_cache(maxsize=None) def get_pipeline(model_name): tok = AutoTokenizer.from_pretrained(model_name) mdl = AutoModelForCausalLM.from_pretrained(model_name, weights_only=False) mdl.to("cuda") return pipeline("text-generation", model=mdl, tokenizer=tok, device=0) @spaces.GPU def suggest_next(text, model_name, k, m): """ 使用 Beam Search 產生 M 條最可能的下段建議,並一次更新可選項清單。 """ gen_pipe = get_pipeline(model_name) outs = gen_pipe( text, max_new_tokens=k, num_beams=m, num_return_sequences=m, do_sample=False, early_stopping=True ) suggestions = [out["generated_text"][len(text):] for out in outs] # 使用 None 重置選值,避免預設 value 不在 choices 列表中 return update(choices=suggestions, value=None) def append_suggestion(current, choice): # 如果沒有選擇,直接返回原文字 if choice is None: return current return current + choice with gr.Blocks() as demo: gr.Markdown( "## 🇹🇼 台灣中文下段預測 \n" "結合小型語言模型與 ZeroGPU,即時 IME 風格建議條。" ) # 建議清單置頂,使用 Radio 類型一次展開 suggestions = gr.Radio( [], label="建議清單", interactive=True, type="value", elem_id="suggestions-bar" ) # 輸入區與生成按鈕並排 with gr.Row(): input_text = gr.TextArea( label="輸入文字", lines=4, placeholder="請在此輸入起始片段…" ) gpu_button = gr.Button("使用 GPU 生成建議") # 參數設定區 with gr.Row(): model_selector = gr.Dropdown( MODEL_LIST, value=MODEL_LIST[0], label="選擇模型" ) k_slider = gr.Slider( minimum=1, maximum=50, step=1, value=5, label="K(最大新生成詞元)" ) m_slider = gr.Slider( minimum=1, maximum=10, step=1, value=5, label="M(建議數量 / Beam 數)" ) # 事件綁定 gpu_button.click( fn=suggest_next, inputs=[input_text, model_selector, k_slider, m_slider], outputs=suggestions, ) suggestions.change( fn=append_suggestion, inputs=[input_text, suggestions], outputs=input_text, ) demo.launch()